Panasonic

Brushless Motor

BRUSHLESS MOTOR
 $G V_{\text {series }}$
 MINAS-BLK series series

Panasonic Corporation, Appliances Company, Motor Business Unit

Compact and high-efficiency brushless motors

High-efficiency energy saving eco-friendly MINAS series* technology adopted more compact and higher-output brushless motors.
 * MINAS series is a registered trademark for Panasonic AC servo motors.

- 90 mm square 130 W

Typical options

Console A

Digital key pad

Power Supply DC 24 V Type $\bullet 80 \mathrm{~mm}$ square 50 W only

GV series, input voltage 24 V type made to order item. Please contact us if you'd like detailed information

Typical options

Console A

Digital key pad

MINAS-BL

Introduction 1
GV series 10
Check the model number 11
Brushless motor specifications 11
Brushless amplifier specifications 12
System configuration/ System configuration diagram 13
Parameter list of brushless amplifier 15
Brushless motors - Details 17
Gear head 23
KV series 26
Check the model number 27
Brushless motor specifications 27
Brushless amplifier specifications 28
System configuration/ System configuration diagram 29
Parameter list of brushless amplifier 33
Brushless motors - Details 35
GP series 46
Check the model number 47
Brushless motor specifications 47
Brushless amplifier specifications 48
System configuration/ System configuration diagram 49
Parameter list of brushless amplifier/ Example setting of motion pattern 51
Brushless motors - Details 57
Gear head 63
Options 66
Options - Details 67
List of peripheral equipments 74
Information 76
Guide to the international system of units (SI) 77
Selecting motor capacity 79
Conformance to international safety standards 93
Table of part numbers and options 95
Index 97
Sales office 101

Digital key pad

Motor Business coexisting

Panasonic Corporation, Appliances Company,

Motor Business Unit promotes preservation of

Abstract

the environment together with industrial activities and aims to "Company Coexisting with Global Environment"

Environmental conservation activities in industrial field

Environmental conservation activities have been required widely from home level to company level nowadays, and the role of conservation in the industrial sector has become more important. Total emissions of CO_{2} in 2009 in Japan were approximately 1.1 billion tons, out of which 380 million tons belong to factory and industrial field.
It has become a huge amount which significantly exceeded transportation and business sectors.

- CO2 Emissions (2009)

Source: CO_{2} Inventory Office "Japan CO_{2} emission data" (Units: million tons)

With the spread of high-efficiency motors that minimizes the loss of electrical energy, We aim to achieve significant energy savings for the entire industry.

with Global Environment

Basic attitude

Environmental Policy

Based on "Environmental Declaration" of Panasonic, Motor Business Unit of Appliances Company also established the "Environmental Policy" as the basic attitude to environmental conservation. Based on this, we create more specific policies and manuals, and have been promoting environmental conservation activities.

Motor Business Unit of Appliances Company of Panasonic Corporation recognizes that the preservation of global environment is the important mission as a good corporate citizen of society. Our philosophy is "Coexisting with the Global Environment", and run sound business activities harmonized with nature.

Motor holds the key to global environmental protection

From small one used in mobile phones, to big one used in factories, motor has become indispensable in every aspect of our society. It has been consuming more than half part of electricity in Japan which is

Japan Domestic electricity consumption (2005)
Source:Motor Business Unit Research (Units: Hundred million kWh)

Brushless motors of MINAS-BL series

Commutation brushless motor with advanced controlling

 technology features high efficiency and low power loss.In addition, "Split Core Structure" developed for and proven in MINAS series AC servo motors is introduced to these new brushless motors to further reduce their sizes but increase power.

These motors promote "three saving" activities

- Energy saving, Cost saving and Space saving.

GV KV GP Reduce loss and increase efficiency

A permanent magnet on a rotor reduces secondary loss. It also reduces power consumption by 20% compared with those of our small geared motors.
-Comparison of input power with our conventional motors (90 W)

Our compact geared motor \& inverter	Input power		Energy saving effects are significantly seen
	Output 90 W	Loss power	
	Input pow	ion of power. 20%	when these new models are used on multi-axis
MINAS-BL GV series	Output 90 W	Loss	machines, e.g. textile machinery.

GV GP
1
Proprietary CS sensor for sinewave driving Wide 1:133 variable speed range
1 Rated rotational speed: $3000 \mathrm{r} / \mathrm{min}$
GV KV GP
Start torque 150 \% (anemanay
Unlike induction motor Stable operation startup at lower speed

GV KV GP
Fat torque characteristic

Proprietary CS sensor for Smooth operation

realize "Three Savings".

GV KV GP For simultaneous pursuit of miniaturization and high power

"Split core structure" developed for and proven in MINAS series AC servo motors is introduced to these new models to significantly reduce size and weight but increase output power compared with induction motors.

Comparison in size between GV/GP series Reduction in profile and our compact geared motors $(90 \mathrm{~W})$ by approx. 55% by approx. 55%

MINAS-BL GV/GP series 90 W (90 mm square)

Comparison of KV series with general purpose induction motors: Approx. 1/7 in volume and approx. 1/4 in mass

-Comparison in mass between GV/GP
series and our compact geared motors

approx. $1 / 3$
:---:
50 W
90 W
130 W

-The size of a GV/GP series brushless amplifier is almost equal to that of a postcard and weights approx. 370 g .

Enable downsizing of embedded device.

GV KV GP They also reduce maintenance and setup cost.

Commutatorless and brushless design reduces associated costs such as maintenance cost. Our setup support software helps prompt startup and reduction in operation management process.

■Setup support software PANATERM for BL

AParameter setting
File saving
(Batch reading/writing)

© Waveform graphical display Example: Velocity and torque Status of I/O can also be monitored.

The PANATERM for BL allows easy setup of parameters. Waveform graphical display can be used for precisely and accurately monitoring motor conditions, reducing setup and maintenance workload.

[^0]
Speed Control Type $G V_{\text {series }} K V_{\text {series }}$

-High efficiency brushless motors realize energy saving.
-Distinctively controlled CS signal provides smooth operation through sinewave driving.
-Compatible with international standards, CE, UL, CCC and KC (KV series will also be compatible with the standards in the near future), and wider power source voltage range.
-The digital keypad (sold separately) and setup support software PANATERM for BL (available from our website, free of charge) enable parameter setting and monitoring.
-The proprietary CS sensor extends variable speed control range.

- Installation compatibility:GV series is compatible with our compact geared motors

KV series is compatible with our AC servo motors
-Environmental protection: IP65

Typical applications

- Simple NC function enables easier positioning without help of a pulse unit.
-The proprietary CS sensor enables positioning without help of an external encoder.
-Compatible with international standards (CE, UL, CCC and KC), and wider power source voltage range.
- Internal teaching capability simplifies positioning operation.
-The digital keypad (sold separately) and setup support software PANATERM for BL (available from our website, free of charge) enable parameter setting and monitoring.
- Installation is compatible with our compact geared motors.
-Environmental protection: IP65

Typical applications

Contents
Check the model number 47
Brushless motor specifications 47
Brushless amplifier specifications 48
System configuration/ System configuration diagram 49
Parameter list of brushless amplifier 51
Example setting of motion pattern. 53
Brushless motors - Details. 57
Gear head 63

8: 80 mm sq . 9: 90 mm sq.

B: For GP series

Bearing
BV : Ball bearing
Reduction ratio
(Example) 30: Reduction ratio of $1 / 30$
$5,10,15,20,30,50$

Brushless motor specifications

Item	Specifications				
Flange size	80 mm sq .	90 mm sq.			
Motor model No.	MBMU5AZAB	MBMU9A1AB	MBMU9A2AB	MBMU1E1AB	MBMU1E2AB
Motor rated output (W)	50	90		130	
Voltage (V)	for 100/200	for 100	for 200	for 100	for 200
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)	0.16	0.29		0.41	
Starting torque ${ }^{* 1}(\mathrm{~N} \cdot \mathrm{~m})$	0.24	0.43		0.62	
Rated input current (A(rms))	0.53	1.00	0.50	1.30	0.72
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	0.12	0.27		0.36	
Rating	Continuous				
Rated rotation speed ${ }^{\prime 2}$ (r/min)	3000				
Speed control range (r/min)	30 to 4000				
Ambient temperature	-10 to +40 (free from freezing) * Ambient temperature is measured at a distance of 5 cm from the motor.				
Ambient humidity	20 \% to 85 \% RH (free from condensation)				
Altitude	Lower than 1000 m				
Vibration	$4.9 \mathrm{~m} / \mathrm{s}^{2}$ or less $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ (Center of frame)				
Motor insulation class	130(B)				
Protection structure	IP65 ${ }^{\text {3, }}$, ${ }^{\text {a }}$				
Number of poles	8				
Motor mass (kg)	0.7	1.0		1.2	

[^1]Motor rated output
5A: 50 W
9A: 90 W
1E: 130 W

Function 1

B: with circuit for regenerative resistor
Input power supply
1: Single phase AC100 V to 120 V
5: Single phase/ 3-phase AC200 V to 240 V

Function 2
Control mode P: position control
C: RS485 communication, Signal input/Sink type (NPN transistor)
D: RS485 communication,
Signal input/Source type (PNP transistor) Source type made to order item. Please contact us if you'd like detailed information.

Brushless amplifier specifications (GP series)

Item		Specifications							
Amplifier model No.		MBEG5A1BCP	MBEG5A5BCP	MBEG9A1BCP	MBEG9A5BCP	MBEG1E1BCP	MBEG1E5BCP		
Applicable Motor		MBMU5AZAB		MBMU9A1AB	MBMU9A2AB	MBMU1E1AB	MBMU1E2AB		
Motor rated output (W)		50		90		130			
Input power supply voltage(V)		Single phase 100 to 120	Single phase	Single phase 100 to 120	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Single } \\ \text { phase } \end{array} & \text { 3-phase } \\ \hline \end{array}$	Single phase 100 to 120	Single phase	3-phase	
		200 to 240	200 to 240		200 to 240				
Frequency (Hz)			50/60						
Rated input current (A)		1.5	0.7 0.35	2.2	1.1 0.5		2.8	1.5	0.7
Voltage tolerance		± 10 \%							
Control method		Position control by CS signal, PWM sine wave driving system							
Ambient temperature		0 to +50 (free from freezing) * Ambient temperature is measured at a distance of 5 cm from the amplifier.							
Ambient humidity		20 \% to 85 \% RH (free from condensation)							
Location		Indoor (No corrosive gas, A place without garbage, and dust)							
Altitude		Lower than 1000 m							
Vibration		$5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less (10 Hz to 60 Hz)							
Protection structure/ Cooling system		Equivalent to IP20/ Self cooling							
Storage temperature		Normal temperature* Temperature which is acceptable for a short time, such as during transportation is -20 to 60 (free from freezing)							
Storage humidity		Normal humidity							
Number of positioning points		4 points (Travel distance, speed, acceleration time, deceleration time, and relative/absolute can be set per point)							
Positioning resolution		288 pulse/rotation (Accuracy: Within $\pm 5^{\circ}$ degrees at 20 at no load)							
Signal input		4 inputs							
Signal output		2 outputs (Open collector)							
Communication function	RS485	Max 31 units. Setting of parameter, monitoring of control condition. Communication speed: Choose from $2400 \mathrm{bps} / 4800 \mathrm{bps} / 9600 \mathrm{bps}$							
	RS232	Setting of parameter and monitoring of control condition are enabled with commercial PC. ${ }^{\text {.1 }}$							
Digital key pad		Parameter change, status monitor, etc. can be executed through the optional Digital key pad DVOP3510. ${ }^{\text {2 }}$							
Protective function		Warning : Overload warning, Setting change warning Protect : Overload, Overcurrent, Overvoltage, Undervoltage, System error, Over-speed, Sensor error, Overheat, Position error, External forced trip, Position error counter overflow, RS485 communication error, Operation execution error, Homing error, present position overflow, Hardware limit error, Digital key pad communication trouble, user parameter error, and system parameter error							
Regenerating brake		Regenerative braking resistor can be externally connected. ${ }^{\text {.3 }}$ Instantaneous braking torque 150%, Continuous regenerative power 10 W (Regenerative operation with which motor shaft is rotated by load, e.g. load lowering operation, should not be continued.)							
Protection level		Overload protection: 115%, Time characteristics: $150 \% 60 \mathrm{sec}$							
Amplifier mass (kg)		0.37							

*1 PANATERM for BL (Download from our web site.), PC connection cable (DVOP4140), Digital key pad connection cable (DV0P383*0) is required. If your PC does not have RS232 port, use RS232-USB converter.
*2 Digital key pad connection cable (DVOP383*0) is required. *3 Use optional external regenerative resistor (sold separately).

System configuration

Power supply	Rated rotation speed (r/min)	output (W)	Motor	Gear head (Note 1)	Brushless amplifier	Brushless amplifier $\binom{$ supplied with }{ power cable } (Note 2)	Optional parts			
							External regenerative resistor	Noise filter	Surge absorber	Reactor
						Reference page p .74	p. 71	p. 67	p. 67	p. 73
Single phase $100 \text { V }$	3000	50	MBMU5AZAB	MB8G \square BV	MBEG5A1BCP	MBEG5A1BCPC	for 100 V DVOP2890	for single phase power supply DVOP4170	for single phase power supply DVOP4190	for single phase power supply DVOP227
		90	MBMU9A1AB	MB9G \square BV	MBEG9A1BCP	MBEG9A1BCPC				
		130	MBMU1E1AB	MB9G \square BV	MBEG1E1BCP	MBEG1E1BCPC				
Single/ 3-phase 200 V		50	MBMU5AZAB	MB8G \square BV	MBEG5A5BCP	MBEG5A5BCPC	for 200 V DVOPM20068	for single phase power supply	for single phase power supply	for single phase power supply
		90	MBMU9A2AB	MB9G \square BV	MBEG9A5BCP	MBEG9A5BCPC		DV0P4170	DV0P4190 for 3-phase	DVOP227
		130	MBMU1E2AB	MB9G \square BV	MBEG1E5BCP	MBEG1E5BCPC		power supply DVOPM20042	power supply DVOP1450	power supply DVOP220

(Note 1) A figure representing reduction ratio in \square
(Note 2) Refer to p. 74 for a power supply connecting cable.
This part number is the ordering part number for the amplifier and power cable, not for ordering amplifier only.

* When installing the reactor, refer to p. 73.
* Be sure to use a set of matched components (series, power source, capacity, output, etc.)
* This motor is not provided with a holding brake. If it is used to drive a vertical shaft, the movable section may fall down by its own weight as power is turned off.

Options

Optional parts		Parts number	$\begin{aligned} & \text { Reference } \\ & \text { page } \end{aligned}$
Motor extension cable	1 m	DVOPQ1000110	P. 69
	3 m	DV0PQ1000130	
	5 m	DV0PQ1000150	
	10 m	DV0PQ10001A1	
Power supply connector kit		DV0P2870	P. 70
Digital key pad**		DV0P3510	P. 68
Digital key pad connection cable	1 m	DV0P38310	P. 68
	3 m	DV0P38330	
	5 m	DV0P38350	

Optional parts		Parts number	Reference page
Control signal cable	2 m	DVOPM20076	P.70
I/O connector kit	DVOPM20070	P.71	
PC connection cable*2	1.5 m	DV0P4140	P.70
Noise filter for signal line	DV0P1460	P.67	
DIN rail mounting unit	DV0P3811	P.72	

* For details of cable, refer to p. 68 to 70.
*1 When using Digital key pad, the Digital key pad connection cable (DVOP383*0) is required.
*2 When connecting PC, the PC connection cable (DVOP4140) and the Digital key pad connection cable (DV0P383*0) are required.

Wiring equipment

Selection of circuit breaker (MCCB), magnetic contactor and electric wire. (To check conformity with international standards, refer to p. 93 Conformity with international safety standards.)

Voltage	Power capacity	МССВ Rated current	Magnetic contactor Rated Current (Contact composition)	Core of electric wire (mm^{2})	
				Main circuit, Grounding	Control circuit
Single phase 100 V	50 W to 130 W	5 A	$\begin{gathered} 20 \mathrm{~A} \\ (3 \mathrm{P}+1 \mathrm{a}) \end{gathered}$	0.5 (AWG20)	0.13 (AWG26)
Single phase 200 V 3-phase 200 V					

\square Be sure to connect the earth terminal to ground.
In wiring to power supply (outside of equipment) from MCCB, use an electric wire of 1.6 mm diameter ($2.0 \mathrm{~mm}^{2}$) or more both for main circuit and grounding. Apply grounding class D (100 Ω or below) for grounding.

Selection of relay

A relay used in a control circuit, e.g. at the control input terminal should be small signal relay (Min. guaranteed current 1 mA or less) for positive contact.
Example: Panasonic: DS, NK or HC series, OMRON: G2A series

- Selection of control circuit switch

When using a switch in place of relay, select a switch rated at minute electric current, to assure positive contact.
Example: Nihon Kaiheiki Ind.: M-2012J-G

System configuration diagram

Example of digital setting

(Digital key pad)

- Monitoring (rotation speed, Current position, trip history etc.)
- Parameter setting, initialization, and copying function.

Parameter list of brushless amplifier

Parameter No.		Parameter name	Explanation	Setting range
00	$\begin{aligned} & \underset{\rightharpoonup}{0} \\ & \overrightarrow{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{3} \end{aligned}$	The 1st target position (rotation number)	You can set travel distance in rotation numbers and pulses. (288 pulses per rotation)	-16384 to 16383
01		The 1st target position (Pulse)		-288 to 288
02		The 1st coordinate setting	You can select positioning system to the 1st point. 0 : Relative travel, 1: Absolute travel	0, 1
03		The 1st setting speed (r/min)	You can set the speed moving to the 1st point.	0 to 4000
04		The 1st acceleration time (ms)	You can set time taken for reaching the 1st setting speed.	1 to 30000
05		The 1st deceleration time (ms)	You can set time taken from the 1st setting speed to stop.	1 to 30000
06		The 1st block setting	0: Normal operation 1: Continuous block operation (1st point \rightarrow 2nd point) 2: Combined block operation (1st point + 2nd point)	0 to 2
07		The 1st block timer setting (ms)	Start commanding of 2nd point after this setting time elapses and command of 1st point is completed.	0 to 30000
08		The 2nd target position (rotation number)	You can set travel distance in rotation numbers and pulses. (288 pulses per rotation)	-16384 to 16383
09		The 2nd target position (pulse)		-288 to 288
OA		The 2nd coordinate setting	You can select positioning system to the 2nd point. 0: Relative travel, 1: Absolute travel	0, 1
Ob		The 2nd setting speed (r/min)	You can set the speed moving to the 2nd point.	0 to 4000
OC		The 2nd acceleration time (ms)	You can set time taken for reaching the 2nd setting speed.	1 to 30000
Od		The 2nd deceleration time (ms)	You can set time taken from the 2nd setting speed to stop.	1 to 30000
OE		The 2nd block setting	0: Normal operation, 1: Continuous block operation (2nd point \rightarrow 3rd point)	0, 1
0F		The 2nd block timer setting (ms)	Start commanding of 3rd point after this setting time elapses and command of 2nd point is completed.	0 to 30000
10	$\begin{gathered} -1 \\ \overrightarrow{0} \\ \omega \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	The 3rd target position (rotation number)	You can set travel distance in rotation numbers and pulses. (288 pulses per rotation)	-16384 to 16383
11		The 3rd target position (Pulse)		-288 to 288
12		The 3rd coordinate setting	You can select positioning system to the 3rd point. 0: Relative travel, 1: Absolute travel	0, 1
13		The 3rd setting speed (r/min)	You can set the speed moving to the 3rd point.	0 to 4000
14		The 3rd acceleration time (ms)	You can set time taken for reaching the 3rd setting speed.	1 to 30000
15		The 3rd deceleration time (ms)	You can set time taken from the 3rd setting speed to stop.	1 to 30000
16		The 3rd block setting	0: Normal operation, 1: Continuous block operation (3rd point \rightarrow 4th point) 2: Combined block operation (3rd point + 4th point)	0 to 2
17		The 3rd block timer setting (ms)	Start commanding of 4th point after this setting time elapses and command of 3rd point is completed.	0 to 30000
18		The 4th target position (rotation number)	You can set travel distance in rotation numbers and pulses. (288 pulses per rotation)	-16384 to 16383
19		The 4th target position (Pulse)		-288 to 288
1A		The 4th coordinate setting	You can select positioning system to the 4th point. 0: Relative travel, 1: Absolute travel	0, 1
1b		The 4th setting speed (r/min)	You can set the speed moving to the 4th point.	0 to 4000
1 C		The 4th acceleration time (ms)	You can set time taken for reaching the 4th setting speed.	1 to 30000
1d		The 4th deceleration time (ms)	You can set time taken from the 4th setting speed to stop.	1 to 30000
1E		The 4th block setting	0: Normal operation, 1: Continuous block operation (4th point \rightarrow 1st point)	0, 1
1F		The 4th block timer setting (ms)	Start commanding of 1st point after this setting time elapses and command of 4th point is completed.	0 to 30000
20	Acceleration mode		You can select running pattern in acceleration.	0, 1
21	Deceleration mode		You can select running pattern in deceleration.	0, 1
22	Sequential run maximum point number		You can set the maximum point number for positioning by use of sequential run signal.	1 to 4
23	Coordinate system setting		0: CCW rotation in + direction, 1: CW rotation in + direction	0, 1
28	Position loop gain (the 1st gain)		You can determine the response of position control.	0 to 100
29	Velocity loop gain (the 1st gain)		You can determine the response of velocity loop.	0 to 10000
2A	Velocity loop integration gain (the 1st gain)		You can determine the rigidity of velocity loop.	0 to 10000
2b	Velocity feed forward gain (the 1st gain) (\%)		This is the function to forward (add) position command to speed command.	0 to 100
2 C	Speed detection filter (the 1st gain)		You can set the time constant of low-pass filter of speed feedback.	5 to 20
2d	Velocity feed forward-timeconstant (ms)(Common to the 1st/2nd gain)		This is a filter in velocity feed forward section.	0 to 500
2E	Torque limit setting (the 1st gain)		Output torque of motor is limited.	50 to 150
2F	Torque filter timeconstant (Common to the 1st/2nd gain)		You can set the time constant of primary delay filter of torque instruction.	0 to 500
30	The 2nd position loop gain (the 2nd gain)		You can determine the response of position control.	0 to 100
31	The 2nd velocity loop gain (the 2nd gain)		You can determine the response of velocity loop.	0 to 10000
32	The 2nd velocity loop integration gain (the 2nd gain)		You can determine the rigidity of velocity loop.	0 to 10000
33	The 2nd velocity feed forward gain (the 2nd gain)		Set it at 0 in normal use. This is the function to forward (add) position command to speed command during on the 2nd gain.	0 to 100
34	The 2nd speed detection filter (the 2nd gain)		Use the default setting normally. You can set the time constant of low-pass filter in speed feedback.	5 to 20
35	The 2nd torque limit setting (the 2nd gain) (\%)		Output torque of the motor is limited.	50 to 150
36	Gain switching mode selection		0 : Fixed at the 1st gain, 1: Fixed at the 2nd gain 2: Automatic switching (In running = the 2nd gain, In standstill = the 1st gain)	0 to 2
37		in switching time (ms)	When the gain switching mode is set to automatic switching, after the output of instruction, the 2nd gain (in running) changes to the 1st gain (in standstill) when time setting has elapsed.	0 to 10000

Parameter	Parameter name	Explanation	Setting range
38	In-position range	In-position signal is turned on when position error (difference between command position and actual position) is below setting.	0 to 16383
39	Position error set-up	Abnormal detect when deviation value exceeds the set value $\times 8$.	0 to 16383
3A	Position error invalidation	0: Effective, 1: Ineffective (Motor does not trip but keeps on operating.)	0, 1
3E	Run-command selection	You can select the run-command. 0: I/O, 1: RS485	0, 1
40	Homing mode	Select homing method.	0 to 5
41	Homing direction	You can set the detection direction of home.	0, 1
42	Homing speed (r/min)	You can set the speed in homing action.	0 to 4000
43	Homing limit	Sets the limit of the amount of movement during homing. Homing error detect if travel distance has exceeded this setting.	0 to 16383
44	Homing acceleration/deceleration time (ms)	You can set time taken for reaching the homing speed.	1 to 30000
45	Bumping torque detection value (\%)	You can limit the output torque of motor when returning to bumping home.	50 to 150
46	Bumping detection time (ms)	You can set the detection time of bumping toque in returning to bumping home.	0 to 15000
47	Home offset (pulse)	You can set the offset from home detection position.	-16384 to 16383
48	Homing function	0: Required, 1: Not required (Position when power is turned on is the home.) 2: When homing is not completed yet, homing operation is executed by positioning start signal.	0 to 2
49	Homing selection when motor is free	0: When homing is unavailable after motor free state is reset (when trip occurs, after trip is reset), positioning operation is enabled. 1: When motor is free (trip occurs), homing is required again.	0,1
4A	Present position overflow permission	You can set operation when the present position counter of motor has overflowed (exceeded ± 32767 rotations). 0: Prohibited (motor trip), 1: Permitted (no motor trip)	0,1
4b	Jog speed (r/min)	You can set the operation speed in jog operation.	0 to 4000
4C	Jog acceleration time (ms)	You can set time taken for reaching jog speed.	1 to 30000
4d	Jog deceleration time (ms)	You can set time taken from jog speed until stopping.	1 to 30000
4E	Teaching speed (r/min)	You can set speed used in applying teaching function of Digital key pad.	0 to 4000
50	I1 function selection	You can assign functions to I1 through I4. 0: Forced trip, 1: Instantaneous stop, 2: Deceleration stop 3: Homing start, 4: Forward jog, 5: Reverse jog, 6: Point designation 1 7: Point designation 2, 8: Run start, 9: Sequential run start 10: Trip reset, 11: Home sensor, 12: Limit in + direction 13: Limit in - direction, 14: Direction switching, 15: Motor-free	0 to 15
51	I2 function selection		
52	I3 function selection		
53	I4 function selection		
54	I1 Input logic selection	0: Normal logic (Input is effective (ON) when connected to GND.) 1: Reverse rotation logic (Input is effective (ON) when OPEN (open)) Set the reverse rotation logic to the input desired to be operated on wiring break side such as forced trip (emergency stop input).	0,1
55	I2 Input logic selection		
56	I3 Input logic selection		
57	I4 Input logic selection		
58	Trip reset function enable	0: Disable, 1: Enable (Operation start signal longer than 1 second enables execution of trip reset.)	0,1
59	Deceleration time in instantaneous stop (ms)	Set the deceleration time in executing instantaneous stop.	0 to 30000
5C	O1 function selection	You can assign functions to O 1 and O 2. 0: Trip output, 1: In-position, 2: In-motion signal (BUSY) 3: Homing completion, 4: Overload detection, 5: Torque under restriction	0 to 5
5d	O2 function selection		
5E	O1 output polarity selection	0: Normal logic (Output transistor ON at enabled, OFF at disabled) 1: Reversed logic (Output transistor OFF at enabled, ON at disabled) When only trip output is normal logic, output transistor is off in tripping, and output transistor is on in no tripping.	0, 1
5F	O2 output polarity selection		
60	RS485 device number	Set the device number of amplifier in communication (Amplifier ID).	$\begin{aligned} & 128 \text { to } 159 \\ & \text { (80h to } 9 \text { Fh }) \end{aligned}$
61	RS485 communication speed	Set the communication speed of RS485 communication.	0 to 2
62	RS485 communication standard	Set the communication standard of RS485 communication.	0 to 11
63	RS485 communication response time	Communication response time is the shortest time for setting transmission mode in RS485 bus for response after the amplifier has received communication data.	10 to 100
64	RS485 retry times of communication	Set the retry times of RS485 communication.	0 to 9
65	RS485 protocol timeout (seconds)	Protocol timeout is the time allowed from reception of a character code to reception of the next one in communication.	1 to 255
6A	Trip history clear	When "(yes)" is set, trip history (Pr6b to 6F) is cleared.	O(No), 1(Yes)
6b	Trip history 1	Display the latest trip.	-
6C	Trip history 2	Display the 2nd latest trip.	-
6d	Trip history 3	Display the 3rd latest trip.	-
6E	Trip history 4	Display the 4th latest trip.	-
6F	Trip history 5	Display the 5th latest trip.	-
77	Parameter copy function	This function is only available with use of the Digital key pad.	No/P.INIT/ P.LOAD/P.PROG
7A	Monitor mode switching	You can choose monitor screen to be displayed first when the Digital key pad is connected.	0 to 6
7b	Numerator of command pulse ratio	You can set the division multiplier ratio of travel distance.	1 to 20000
7C	Denominator of command pulse ratio		
7F	For manufacturer use	It cannot be changed.	-

Example setting of motion pattern

Indexing (feeding by fixed length)

- When feeding by fixed length of travel

<Example of setting>

- Every time I1 is turned on, the motor runs for fixed travel distance.
- Homing operation is executed and the home is set when I1 is turned on just once after power-on. (It is also possible to set power-on position to the home.)
[Signal function setting]

Terminal symbol	Terminal number	Terminal name	Description of function
I1	1	Signal input 1	Operates when "I1" and "GND" are shorted (Homing operation for the first time after power-on)
I2	2	Signal input 2	CW operation when "I2" and "GND" are shorted, CCW operation when they are opened (including homing operation mode)
I3	11	Signal input 3	Motor trips when "I3" and "GND" are open.
I4	4	Signal input 4	Home detected when "I4" and "GND" are shorted.
O1	6	Signal output 1 1	Trip output (Normally on, and off in tripping)
O2	12	Signal output 2	In motion signal (including homing operation)

[Operation timing chart]

[Parameter setting] Indicates only the point changed from default setting. (Parameter marked with * is effective after power resetting.)

Function	Parameter No. (Pr $\square \square)$	Name of parameter	Setting	Remarks
	50*	I1 function selection	8	Run start (used only for the 1st point)
	51*	I2 function selection	14	Direction switching input
	52*	I3 function selection	0	Forced trip input
	53*	I4 function selection	11	Home sensor input
	56*	I3 input logic selection	1	Changes the polarity of 3 to effective when open (forced trip in this case).
	5C	01 function selection	0	Trip output
	$5 d$	02 function selection	2	In-motion signal
	40	Homing mode	0, 1, 5	Set homing in which to use home sensor.
	41	Homing direction	0, 1	Set any desired homing direction.
	42	Homing speed	200	Set any desired operation speed.
	44	Homing acceleration/deceleration time	200	Set any desired acceleration/deceleration time.
	48*	Homing function	2	Set to 1 when setting power-on position to the home.
	49	Selecting homing when motor is free	1	Set to 1 (homing is required again when tripping occurs.)
	4A	Present position overflow permission	1	Set to 1 (permits overflow).
	00	The 1st target position (rotation number)	10	Set the travel distance by rotation number and pulse (one rotation per 288 pulses). When the setting does not represent proper mechanical reduction gear ratio, accumulated error occurs, which results in dislocation.
	01	The 1st target position (pulse)	0	
	02	The 1st coordinate setting	0	Set relative travel.
	03	The 1st setting speed	2000	Set any desired operation speed.
	04, 05	The 1st acceleration time/ The 1st deceleration time	200	Set any desired acceleration time and deceleration time.
	06	The 1st block setting	0	Set normal operation.

<Information>

In this setting, I3 is set to forced trip when open. Connect an emergency stop switch or the like which is shorted but open at error to I3 terminal.
Please note that the motor will not run due to forced trip without such connection.

Reciprocating

- When executing reciprocating run between fixed positions

<Example of setting>

- Every time I1 is turned on, feed action \rightarrow return action \rightarrow feed action is repeated in turn.
-When power is on, homing operation is executed and home is set by I1.
[Signal function setting]

Terminal symbol	Terminal number	Terminal name	Description of function
I1	1	Signal input 1	Operates when "I1" and "GND" are shorted (Homing operation for the first time after power-on)
I2	2	Signal input 2	Home detected when "I2" and "GND" are shorted.
I3	11	Signal input 3	Operation stops when "I3" and "GND" are shorted.
I4	4	Signal input 4	Motor trips when "I4" and "GND" are open.
O1	6	Signal output 1	Trip output (Normally on, and off in tripping)
O2	12	Signal output 2	In motion signal (including homing operation)

[Operation timing chart]

After the motor has stopped instantaneously during return operation, when I1 is turned on again, feed operation is executed from stop position. Similarly, after the motor has stopped instantaneously during feed operation, when I1 is turned on again, return operation is executed
[Parameter setting] Indicates only the point changed from default setting. (Parameter marked with * is effective after power resetting.)

Function	$\begin{array}{\|c\|} \hline \text { Parameter } \\ \text { No. } \\ \text { (Pr } \square \text {) } \end{array}$	Name of parameter	Setting	Remarks
	50*	I1 function selection	9	Sequential run start
	51*	I2 function selection	11	Home sensor input
	52*	I3 function selection	1	Instantaneous stop input
	53*	I4 function selection	0	Forced trip input
	57*	I4 input logic selection	1	Changes the polarity of I4 to effective when open (forced trip in this case).
	5C	01 function selection	0	Trip output
	5d	02 function selection	2	In-motion signal
	40	Homing mode	0	Set homing in which to use home sensor.
	41	Homing direction	1	Set the homing direction normally to minus direction (return direction).
	42	Homing speed	200	Set any desired operation speed.
	44	Homing acceleration deceleration time	200	Set any desired acceleration/deceleration time.
	48*	Homing function	2	Homing operation by initial I1 input when power is turned on.
	49	Selecting homing when motor is free	0	Homing is not required when tripping occurs.
	4A	Present position overflow permission	0	Overflow is not permitted because absolute travel is set.
	23*	Coordinate system setting	0, 1	Set so that homing is in minus direction.
	00	The 1st target position (rotation number)	10	Set the feed position coordinates.
	01	The 1st target position (pulse)	0	
	02	The 1st coordinate setting	1	Set absolute travel.
	03	The 1st setting speed	2000	Set any desired travel.
	04, 05	The 1st acceleration time/ The 1st deceleration time	200	Set any desired acceleration time and deceleration time.
	06	The 1st block setting	0	Set normal operation.
	08	The 2nd target position (rotation number)	2	Set the return position coordinate. (Set 0 when the position is the same as home.)
	09	The 2nd target position (pulse)	0	
	OA	The 2nd coordinate setting	1	Set absolute travel.
	Ob	The 2nd setting speed	2000	Set any desired travel.
	OC, Od	The 2nd acceleration time/ The 2nd deceleration time	200	Set any desired acceleration time and deceleration time.
	OE	The 2nd block setting	0	Set normal operation.
	22	Sequential run Maximum point number	2	Restricts the maximum point number in sequential operation. When this parameter is set to 2 , whenever I1 is turned on, system operates in turn from the 1st point \rightarrow the 2nd point \rightarrow the 1st point

Example setting of motion pattern

Automatic reciprocating

- When executing fixed reciprocating sequence operation with single run start signal

<Example of setting>

-When I1 is turned on, the unit moves to target position (feed position), waits for a specified time, and returns to original position (return position).
-When power is on, homing operation is executed and home is set by I 1 .

[Signal function setting]

Terminal symbol	Terminal number	Terminal name	Description of function
I1	1	Signal input 1	Operates when "I1" and "GND" are shorted (Homing operation for the first time after power-on)
I2	2	Signal input 2	Home detected when "I2" and "GND" are shorted.
I3	11	Signal input 3	Operation stops when "I3" and "GND" are shorted. (Motor does not operate during short-circuit.)
I4	4	Signal input 4	Motor trips when "I4" and "GND" are open.
O1	6	Signal output 1	Trip output (Normally on, and off in tripping)
O2	12	Signal output 2	In motion signal (including homing operation)

[Operation timing chart]

[Parameter setting] Indicates only the point changed from default setting. (Parameter marked with * is effective after power resetting.)

Function	Parameter No. ($\mathrm{Pr} \square \square$)	Name of parameter	Setting	Remarks
	50*	I1 function selection	8	Run start
	51*	I2 function selection	11	Home sensor input
	52*	I3 function selection	1	Instantaneous stop input
	53*	I4 function selection	0	Forced trip input
	57*	I4 input logic selection	1	Changes the polarity of I4 to effective when open (forced trip in this case).
	5C	01 function selection	0	Trip output
	$5 d$	02 function selection	2	In-motion signal
	40	Homing mode	0	Set homing in which to use home sensor.
	41	Homing direction	1	Set the homing direction normally to minus direction (return direction).
	42	Homing speed	200	Set any desired operation speed.
	44	Homing acceleration/deceleration time	200	Set any desired acceleration/deceleration time.
	48*	Homing function	2	Homing operation by initial I1 input when power is turned on.
	49	Selecting homing when motor is free	0	Homing is not required when tripping occurs.
	4A	Present position overflow permission	0	Overflow is not permitted because absolute travel is set.
	23^{*}	Coordinate system setting	0, 1	Set so that homing is in minus direction.
	00	The 1st target position (rotation number)	10	Set the feed position coordinates.
	01	The 1st target position (pulse)	0	
	02	The 1st coordinate setting	1	Set absolute travel.
	03	The 1st setting speed	2000	Set any desired operation speed.
	04, 05	The 1st acceleration time/ The 1st deceleration time	200	Set any desired acceleration/deceleration time.
	06	The 1st block setting	1	Execute running to the 2nd point, after executing running to the 1st point.
	07	The 1st block timer setting	500	The 2nd point operation is started in 500 ms .
	08	The 2nd target position (rotation number)	2	Set the return position coordinate. (Set 0 when the position is the same as home.)
	09	The 2nd target position (pulse)	0	
	OA	The 2nd coordinate setting	1	Set absolute travel.
	Ob	The 2nd setting speed	2000	Set any desired operation speed.
	OC, Od	The 2nd acceleration time/ The 2nd deceleration time	200	Set any desired acceleration/deceleration time.
	OE	The 2nd block setting	0	Set normal operation.
	OF	The 2nd block timer setting	0	Ineffective because OE is 0 .

Door opening/closing

- When executing reciprocating operation between 2 points

[Signal function setting]

Terminal symbol	Terminal number	Terminal name	Description of function
I1	1	Signal input 1	Operates when "I1" and "GND" are shorted (Homing operation for the first time after power-on)
I2	2	Signal input 2	Opening (point 2) operation when "I2" and "GND" are shorted, and closing (point 1) operation when they are open.
I3	11	Signal input 3	Motor is free when "I3" and "GND" are open. (Servo lock released)
I4	4	Signal input 4	Operation is stopped when "I4" and "GND" are open. (Motor is not activated while they are open.)
O1	6	Signal output 1	Trip output (Normally on, and off in tripping)
O2	12	Signal output 2	In motion signal (including homing operation)

<Example of setting>

- When open/close is chosen and I1 is input, open/close operation is executed
- When the door is stopped in any position on the way of action, opening or closing operation is enabled from such position. (It is the same when the door is moved by hand with motor disabled.)
- Use of bumping homing enables elimination of home sensor.
- Holding torque when motor is stopped can be changed.
- Coordinate system + direction depends on configuration of gear head and machine. When setting the rotation direction CCW of motor shaft to + , set Pr23 at " 0 ", and when setting CW to + , set Pr23 at "1". - When setting the Mechanical end offset value to -144 the Home is the point which has moved 144 pulses to the + direction seen from the Mechanical end.
Mechanical end Homing direction (-)

(-144) Home 0 \quad\begin{tabular}{c}
The 1st point

(closed)

\quad

The 2nd point

(opened)

Coordinate

system
\end{tabular}$+$

[Operation timing chart]

[Parameter setting] Indicates only the point changed from default setting. (Parameter marked with * is effective after power resetting.)

Function	$\begin{aligned} & \text { Parameter } \\ & \text { No. } \\ & \text { (Pr } \square) \end{aligned}$	Name of parameter	Setting	Remarks
	50*	I1 function selection	8	Run start
	51*	I2 function selection	6	Point designation 1 input (choosing the 1st/2nd point)
	52*	I3 function selection	15	Motor-free input
	53*	I4 function selection	1	Instantaneous stop input
	56^{*}	I3 input logic selection	1	Changes the polarity of I3 to effective when open (motor-free in this case).
	57*	I4 input logic selection	1	Changes the polarity of I4 to effective when open (instantaneous stop in this case)
	5C	01 function selection	0	Trip output
	5d	02 function selection	2	In-motion signal
	40	Homing mode	3	Bumping homing
	41	Homing direction	1	Set the homing direction normally to minus direction (closing direction).
	42	Homing speed	200	Set any desired operation speed.
	44	Homing acceleration/deceleration time	200	Set any desired acceleration/deceleration time.
	45	Bumping torque detection value	50	Torque limit during bumping homing
	46	Bumping torque detection time	100	Home is detected when torque restriction continues for one second.
	47	Home offset	-144	Set the distance from the home desired to be set to the mechanical end.
	48*	Homing function	2	When power is turned on, homing operation is executed by initial I1 input.
	49	Homing selection when motor is free	0	Homing is not required when tripping occurs.
	4A	Present position overflow permission	0	Overflow is not permitted because absolute travel is set.
	23*	Coordinate system setting	0, 1	Set so that homing is in minus direction.
	00	The 1st target position (rotation number)	0	Set the door closing position coordinate. (Coordinate is 0 when closing position is the same as home position.)
	01	The 1st target position (pulse)	0	
	02	The 1st coordinate setting	1	Set absolute travel.
	03	The 1st setting speed	2000	Set any desired operation speed.
	04, 05	The 1st acceleration time/ The 1st deceleration time	200	Set any desired acceleration time and deceleration time.
	06	The 1st block setting	0	Set normal operation.
	08	The 2nd target position (rotation number)	40	Set the door opening position coordinate.
	09	The 2nd target position (pulse)	0	
	OA	The 2nd coordinate setting	1	Set absolute travel.
	Ob	The 2nd setting speed	2000	Set any desired operation speed.
	OC, Od	The 2nd acceleration time/ The 2nd deceleration time	200	Set any desired acceleration time and deceleration time.
	OE	The 2nd block setting	0	Set normal operation.

For automatically changing the retention torque (retention force) when door is stopped

	2 E	Torque limit setting	100	Sets the retention torque when door is stopped. The smaller the value is, the weaker the retention force becomes.
	35	The 2nd torque limit setting	150	Maximum output torque when door is operating.
	36	Gain switching mode selection	2	Set to 0 when executing no switching.
	37	Gain switching time	100	Torque is changed in 100 ms after completion of operation instruction.

MINAS-BL GP ${ }_{\text {series }}$

Specification (For Common specification, see p. 47, 48)

	Model No. / Amplifier and Motor		Rated output (W)	Input power supply for Amplifier				Rated torque ($\mathrm{N} \cdot \mathrm{m}$)	Starting torque ($\mathrm{N} \cdot \mathrm{m}$)	Rated speed (r/min)	Maximum rotation speed (r/min)
Size	Brushless Amplifier	Motor		Voltage AC (V)	Allowed range (\%)	Frequency (Hz)	Rated input current (A)				
$\begin{aligned} & 80 \mathrm{~mm} \\ & \mathrm{sq} . \end{aligned}$	MBEG5A1BCP	MBMU5AZAB	50	Single phase 100 to 120	± 10	50/60	1.5	0.16	0.24	3000	4000
	MBEG5A5BCP			Single phase3 --phase200to 240			Single phase 0.7				
							3 -phase 0.35				

Permissible torque at output shaft of gear head ($\mathrm{N} \cdot \mathrm{m}$)

Permissible load inertia moment $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$

Reduction ratio	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$
Applicable Gear head	3.42	13.8	30.6	55.8	$\mathbf{1 2 7}$	342

Permissible shaft load

			Overhung load (W)	Thrust load (F)
	Applicable Gear head	MB8G5BV	245 N	98 N
		MB8G10BV, 15BV, 20BV	343 N	
		MB8G30BV, 50BV	539 N	

Wiring diagram

- In Case of 3-Phase 200 V

Connector for control signals (I/O)

* Do not connect anything on (NC). Please refer to P. 69 for the wiring of the motor extension cable.

Be sure to ground the grounding terminal.
In wiring to power supply (outside of equipment) from MCCB, use an electric wire of 1.6 mm diameter $\left(2.0 \mathrm{~mm}^{2}\right)$ or more both for main circuit and grounding. Apply grounding class D (100 Ω or below) for grounding. Do not tighten the ground wires together, but connect them individually.

Speed-torque /Dotted line shows a characteristic curve〉 characteristic when supply voltage drops by 10%.

[^2]

Before installing the equipment, assemble the motor and gear head temporarily which will ensure stable installation of the equipment.

Gear head (dimensions)
MB8G \square BV

<Key and keyway [attachment]>

*2 Dimensions and mass with () is the gearhead of gear ratio greater than 30.

<Cautions> Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MINAS-BL GP ${ }_{\text {series }}$

Specification (For Common specification, see p. 47, 48)

	Model No. / Amplifier and Motor		Rated output (W)	Input power supply for Amplifier				Rated torque ($\mathrm{N} \cdot \mathrm{m}$)	Starting torque ($\mathrm{N} \cdot \mathrm{m}$)	Rated speed (r/min)	Maximum rotation speed (r/min)
Size	Brushless Amplifier	Motor		Voltage AC (V)	Allowed range (\%)	Frequency (Hz)	Rated input current (A)				
$\begin{gathered} 90 \mathrm{~mm} \\ \mathrm{sq} . \end{gathered}$	MBEG9A1BCP	MBMU9A1AB	90	Single phase 100 to 120	± 10	50/60	2.2	0.29	0.43	3000	4000
	MBEG9A5BCP	MBMU9A2AB		$\underset{\substack{\text { Single phase } \\ 3 \text {-phase }}}{200}$ to 240			Single phase 1.1				
							3-phase 0.5				

Permissible torque at output shaft of gear head ($\mathrm{N} \cdot \mathrm{m}$)

Permissible load inertia moment $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$

Reduction ratio	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$
Applicable Gear head						
MB9G \square BV	16.4	67.6	142	257	589	1684

Permissible shaft load

			Overhung load (W)	Thrust load (F)
	Applicable Gear head	MB9G5BV	294 N	147 N
		MB9G10BV, 15BV, 20BV	490 N	
		MB9G30BV, 50BV	637 N	

Wiring diagram

Speed-torque /Dotted line shows a characteristic curve〉 characteristic (when supply voltage drops by 10%.

[^3]
*1 Before installing the equipment, assemble the motor and gear head temporarily, which will ensure stable installation of the equipment.

Gear head (dimensions)

MB9G \square BV

<Key and keyway [attachment]>

*2 Dimensions and mass with () is the gearhead of gear ratio greater than 30 .

[^4]
MINAS-BL GP ${ }_{\text {series }}$

Specification (For Common specification, see p. 47, 48)

	Model No. / Amplifier and Motor		Rated output (W)	Input power supply for Amplifier				Rated torque ($\mathrm{N} \cdot \mathrm{m}$)	Starting torque ($\mathrm{N} \cdot \mathrm{m}$)	Rated speed (r/min)	Maximum rotation speed (r/min)
Size	Brushless Amplifier	Motor		Voltage AC (V)	Allowed range (\%)	Frequency (Hz)	Rated input current (A)				
$\begin{aligned} & 90 \mathrm{~mm} \\ & \mathrm{sq} . \end{aligned}$	MBEG1E1BCP	MBMU1E1AB	130	Single phase 100 to 120	± 10	50/60	2.8	0.41	0.62	3000	4000
	MBEG1E5BCP	MBMU1E2AB		Single phase13-phase200to 240			Single phase 1.5				
							3-phase 0.7				

Permissible torque at output shaft of gear head ($\mathrm{N} \cdot \mathrm{m}$)

Applicable Gear head	Reduction ratio			5	10	15	20	30	50
MB9G \square BV	motor rotation speed (r/min)	3000 or less		1.9	3.7	5.6	7.4	10.7	17.7
		3000	100 V	1.1	2.1	3.3	4.3	6.2	10.3
		4000	200 V	1.4	2.8	4.2	5.6	8.0	13.3
	Rotational direction			Same as motor rotational direction				Reverse to	al dire

Permissible load inertia moment $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$

Reduction ratio	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$
Applicable Gear head	16.4	67.6	142	257	589	1684

Permissible shaft load

			Overhung load (W)	Thrust load (F)
	Applicable Gear head	MB9G5BV	294 N	147 N
		MB9G10BV, 15BV, 20BV	490 N	
		MB9G30BV, 50BV	637 N	

Wiring diagram

Speed-torque (Dotted line shows a characteristic curve) characteristic when supply voltage drops by 10%.

[^5]
*1 Before installing the equipment, assemble the motor and gear head temporarily, which will ensure stable installation of the equipment.

Gear head (dimensions)

MB9G \square BV

<Key and keyway [attachment]>

*2 Dimensions and mass with () is the gearhead of gear ratio greater than 30 .

<Cautions> Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

Gear head GP series

Outline of gear head

Reduction ratio

- Reduction ratio are 6 types $1 / 5$ to $1 / 50$.

Gear type/size

MB8: 50 W (Hinge not attached)
MB9: 90 W, 130 W (Hinge not attached)

Backlash

Less than 2° (design value)

Type of gear head and reduction ratio

Gear type/size	Motor capacity	Reduction ratio					
		$1 / 5$	$1 / 10$	$1 / 15$	$1 / 20$	$1 / 30$	$1 / 50$
MB8		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
MB9		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Check the Model number

Type $\quad 9: 90 \mathrm{~mm}$ sq. B: For GP series

(Example) 30: Reduction ratio of $1 / 30$
$5,10,15,20,30,50$

Calculation of torque at output shaft of gear head

Standard gear head only

Maximum permissible torque

There is a limit to the strength of a gear due to its material and construction. The usable load torque determined based on this limit is called permissible torque. As can be seen from the above-mentioned formula, the load becomes larger when the reduction ratio is increased. If the gear head is used with the load exceeding the permissible torque, its life expectancy will be shortened significantly. Refer to the permissible torque for each model and use the gear head at an appropriate load.

Nominal reduction ratio and actual reduction ratio

Actual reduction ratio of $\mathrm{MB} 8, \mathrm{MB9}$ is the same as the nominal reduction ratio

Gear head

Nominal reduction ratio	Actual reduction ratio	
	MB8G \square BV	MB9G $\square \mathbf{B V}$
$\mathbf{1} / \mathbf{5}$	$1 / 5$	$1 / 5$
$\mathbf{1} / \mathbf{1 0}$	$1 / 10$	$1 / 10$
$\mathbf{1} / \mathbf{1 5}$	$1 / 15$	$1 / 15$
$\mathbf{1} / \mathbf{2 0}$	$1 / 20$	$1 / 20$
$\mathbf{1} / \mathbf{3 0}$	$1 / 30$	$1 / 30$
$\mathbf{1} / \mathbf{5 0}$	$1 / 50$	$1 / 50$

Gear head efficiency

Model No.	Reduction ratio					
	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$
MB8G \square BV	90%				86%	
MB9G \square BV	90%				86%	

Gear head efficiency and ambient temperature

Calculate the actual gear head efficiency by multiplying the above-shown gear head efficiency at room temperature by the torque reduction ratio shown below.

<lmportant>

The gear heads MB8G $\square \mathrm{BV}$ and MB9G $\square \mathrm{BV}$ are designed for use with GP series, and MX8G $\square \mathrm{B}, \mathrm{MZ9G} \square \mathrm{~B}$ and MY9G $\square \mathrm{B}$ are designed for use with GV series, respectively, and they are not compatible with gear heads of different series.

Gear head GP series

Model list of gear head

Gear head

Ball bearing

Size	Reduction ratio	Model No.
80 mm sq. (50 W)	1/5, 1/10, 1/15	MB8G5BV, MB8G10BV, MB8G15BV
	1/20, 1/30	MB8G20BV, MB8G30BV
	1/50	MB8G50BV
$\begin{gathered} 90 \mathrm{~mm} \text { sq. } \\ \binom{90 \mathrm{~W} \cdot 130 \mathrm{~W}}{\text { Common use }} \end{gathered}$	1/5	MB9G5BV
	1/10, 1/15	MB9G10BV, MB9G15BV
	1/20, 1/30, 1/50	MB9G20BV, MB9G30BV, MB9G50BV

* For the specifications for each item, refer to the page of the motor to which it can be applied.

Gear head accessory

Ball bearing

Size	Reduction ratio	Model No.	Accessory				
			Screw (mm)	Flat washer	Hexagon nut	For temporary assembling scre hexagon socke head bolt	Key
80 mm sq.	1/5 to 1/20	MB8G5BV to MB8G20BV	M6×65 hexagon socket head bolt : 4	for M6: 4	M6: 4	M2.6×12: 2	$\begin{aligned} & 5 \times 5 \times 25 \\ & \text { one-end round }: 1 \end{aligned}$
	1/30, 1/50	MB8G30BV, MB8G50BV	M6×70 hexagon socket head bolt : 4	for M6: 4	M6: 4	M2.6×12: 2	$\begin{aligned} & 5 \times 5 \times 25 \\ & \text { one-end round }: 1 \end{aligned}$
90 mm sq.	1/5 to 1/20	MB9G5BV to MB9G20BV	M8×75 hexagon socket head bolt $: 4$	for M8: 4	M8: 4	M3×12:2	$\begin{aligned} & 6 \times 6 \times 25 \\ & \text { one-end round }: 1 \end{aligned}$
	1/30, 1/50	MB9G30BV, MB9G50BV	M8×90 hexagon socket head bolt : 4	for M8: 4	M8: 4	M3×12:2	$\begin{aligned} & 6 \times 6 \times 25 \\ & \text { one-end round }: 1 \end{aligned}$

<Information>

MB type gear head is provided with temporary assembling screw (two hexagon socket head bolt). Before installing the equipment, assemble the motor and gear head temporarily, which will ensure stable installation of the equipment. In installing to the equipment, be sure to use four "mounting screws" attached to the gear head for secure installation.

- Assemble with motor pinion faced up.
- Outward direction of motor leadwire can be aligned with any one of 4 sides of gear head with an output shaft at a different position.

Options

Option

Noise filter/ Surge absorber/ MCCB

Part name	Optional parts number (option)	Manufacturer's parts number	Qty.	Manufacturer
Noise filter (single phase 100 V, 200 V)	DVOP4170	SUP-EK5-ER-6	1	
Noise filter (3-phase)	DVOPM20042	3 3SUP-HU10-ER-6	1	OKAYA ELECTRIC
Surge absorber (single phase 100 V, 200 V)	DV0P4190	$R \cdot A \cdot V-781 B W Z-4$	1	IND. CO., LTD.
Surge absorber (3-phase)	DVOP1450	$R \cdot A \cdot V-781 B X Z-4$	1	
Noise filter for control signals	DVOP1460	ZCAT3035-1330	4	TDK Corporation

Noise filter GV KV GP

- DVOP4170

- DVOPM20042

Surge absorber GV KV GP

- DVOP1450

Noise filter for control signals GV KV GP

- DVOP1460

[Unit: mm]

Recommended circuit breaker (MCCB)

Made by Sensata Technologies Japan Limited: Type IELH-1-11-63-5A-M (single phase) Type IELH-1-111-63-5A-M (3-phase) (Rated current 5A, cutoff characteristics DELAY63)

- Recommended cutoff characteristics: DELAY61-63

Settings

Console A GV KV

Digital key pad GV KV GP

Optional part number

DV0P3510

- Digital display
(Speed, torque, voltage)
- Parameter settings change

Digital key pad connector pin No.

- Parameter storage (read/write)

$$
\begin{aligned}
& \text { Digital key pad connector terminal symbol } \\
& \begin{array}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline \text { Terminal No. } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \text { Terminal name } & - & - & \text { GND } & - & +5 \mathrm{~V} & - & \text { SCK } & \text { SIN } & \text { SOT } & - \\
\hline
\end{array}
\end{aligned}
$$

Cable

\mid Console A connection cable

Optional parts number	Length (L)
DVOPM 2006910	1 m
DVOPM2006930	3 m
DVOPM2006950	5 m

KV

Amp.I/O side connector (J.S.T Mfg.Co.,Ltd.)
Connector : PAP-10V-S
Connector pin: SPHD-002T-P0.5

Console A side connector (Molex Inc.)
Connector : 39-01-2105 (5557-10R-210)
Connector pin : 39-00-0046 (5556T2)

Amp.I/O side connector pin No.	1	2	3	4	5	6	7	8	9	10
Lead color of a cable	Brown	Red				Orange	Yellow	Green		
Console A side connector pin No.	1	2	-	-	-	3	4	5	-	-

Digital key pad connection cable GV KV GP

Optional parts number	Length (L)
DVOP38310	1 m
DVOP38330	3 m
DVOP38350	5 m

Amp.side connector (SER)/modular plug RJ45
Digital key pad side connector (Molex Inc.)
Connector : 39-01-2105 (5557-10R-210)
Connector pin: 39-00-0046 (5556T2)
or
39-00-0047 (5556T2L)

Option

Motor extension cable GV GP

Optional parts number	Length（L）
DVOPQ1000110	1 m
DVOPQ1000130	3 m
DVOPQ1000150	5 m
DVOPQ10001A1	10 m

Accessories

－Insulating cap（for grounding wire insulation） 1
－M4 $\times 6$ pan head screw with spring washer 1
－M4 hex．nut

When using motor extension cable，be sure to connect its grounding wire to the grounding wire of the motor，and connect the other end of grounding wire of the extension cable to the earth terminal of the brushless amplifier．
For connecting grounding wire of motor and motor extension cable，use M4 screw and insulating cap supplied as accessories．

＜Connector wiring＞

－Brushless amplifier side

Pin No．	Signal	Wire color	Wire size
1	U	Red	AWG20
2	V	White	AWG20
3	W	Black	AWG20
4	Vcc	White	AWG26
5	CS1	Red	AWG26
6	CS2	Blue	AWG26
7	CS3	Yellow	AWG26
8	OV	Black	AWG26
M4 round terminal	E	Green／Yellow	AWG20

Motor side

Pin No．
1
2
3
4
5
6
7
8
M4 round terminal

Motor extension cable KV

Optional parts number	Length（L）
DVOPQ1000310	1 m
DVOPQ1000330	3 m
DVOPQ1000350	5 m
DVOPQ10003A1	10 m

＜Wiring of motor side connector＞

－Motor connector

Pin No．	Signal	Wire color
1	U	Red
2	V	White
3	W	Black
4	E	Green／Yellow

－Sensor connector

Pin No．	Signal	Wire color
1	CS1	Red
2	CS2	Blue
3	CS3	Yellow
4	Vcc	White
5	OV	Black
6	NC	-

Do not connect anything on（NC）
（1）Motor side motor connector（Tyco Electronics．）
Connector ：172159－1
Connector pin：170366－1 〔for AWG 20〕
（2）Motor side sensor connector（Molex Inc．）
Connector ：39－01－2066（5559－06P－210）
Connector pin：39－00－0049（5558T2L）〔for AWG 26］
（3）Brushless amplifier side connector（Molex Inc．）
Connector ：39－01－2085（5557－08R－210）
Connector pin ：39－00－0039（5556TL）〔for AWG 20〕 39－00－0047（5556T2L）〔for AWG 26］

L

PC connection cable (10-pin D-sub connector pin 1.5 m) GV KV GP

Optional parts number	Length (L)
DVOP4140	1.5 m

Communication software GV KV GP

Model No.	
PANATERM for BL	Can be downloaded from our web site, free of charge. http://industrial.panasonic.com/ww/i_e/25000/motor_fa_e/motor_fa_e.html

Connector Kit/ Cable/ External speed setter

Power supply connector kit GV KV(50 W, 100 w) GP

Optional part number	Name	Manufacturer's parts No.	Qty.	Manufacturer	Note
DVOP2870	Connector	39-01-2105 (5557-10R-210)	1	Molex Inc	Fits to power supply connector (POWER)
	Connector pin	39-00-0060 (5556PBTL)	6		

-39-01-2105 (5557-10R-210)

Control signal cable (Cable with an I/O connector) GV KV GP

Optional parts number	Length (L)
DVOPM20076	2 m

* Do not connect anything to the pin no. 4 and pin no. 7 in case of use the GP series.

<For your reference>

For tools such as crimp tools necessary to assemble the cable, access the connector manufacturer's web site or consult the manufacturer: refer to p. 74 "List of peripheral equipment manufacturers".

Option

I/O connector kit GV KV GP

Optional part number	Name	Manufacturer's parts No.	Qty.	Manufacturer	Note
DVOPM20070	Connector	PAP-10V-S	1	J.S.T Mfg.Co.,Ltd.	Fits to I/O connector
	Connector pin	SPHD-002T-P0.5	10		

- PAP-10V-S

External speed setter GV KV

* Insert the insulation paper to positively isolate the terminals and chassis.

Panel connector kit (Fits to Console A) GV KV

Optional part number	Name	Manufacturer's parts No.	Qty.	Manufacturer	Note
DVOP3610	Connector	$39-01-2105(5557-10 R-210)$	1	Molex Inc	Fits to Console A
	Connector pin	$39-00-0047$ (5556T2L)	10		

-39-01-2105 (5557-10R-210)

External regenerative resistor GV KV GP

Optional parts number	Specifications	Manufacturer
DVOP2890	$100 \mathrm{~V}, 50 \Omega 10 \mathrm{~W}$	Iwaki Musen Kenkyusho Co., Ltd
DVOPM20068	$200 \mathrm{~V}, 200 \Omega 10 \mathrm{~W}$	

- DVOP2890, DVOPM20068

<For your reference>

For tools such as crimp tools necessary to assemble the cable, access the connector manufacturer's web site or consult the manufacturer: refer to p. 74 "List of peripheral equipment manufacturers".

DIN rail mounting unit GV KV(50 w, 100 w) GP

Optional part number

DV0P3811

- How to Install

Part where DIN

Hook the upper side of DIN rail mounting part on the DIN rail.

Press lightly.
Ensure that the rail stop has been pushed in.

Press lightly the lower part of the main body of amplifier.

- Removing from DIN Rail

With the rail stop released, pull out the lower part of the amplifier to the near side.

Option

Reactor GV KV GP

Fig. 1

- Wiring of the reactor <3-Phase 200 V>

Fig. 2

- Wiring of the reactor <Single phase $100 \mathrm{~V}, 200 \mathrm{~V}>$

F: Center-to-center distance on slotted hole
[Unit: mm]

	Optional parts number	A	B	C	D	$E_{\text {(Max) }}$	F	G	H	I	Inductance (mH)	Rated current (A)
Fig. 1	DV0P220	65 ± 1	125 ± 1	(93)	136Max	155	70+3/-0	85 ± 2	$4-7 \times 12$	M4	6.81	3
Fig. 2	DV0P227	55 ± 0.7	80 ± 1	66.5 ± 1	110Max	90	41 ± 2	55 ± 2	$4-5 \times 10$	M4	4.02	5
	DV0P228	55 ± 0.7	80 ± 1	66.5 ± 1	110Max	95	46 ± 2	60 ± 2	$4-5 \times 10$	M4	2	8

* For applicability of reactor, refer to the corresponding table on p. 95.

Harmonic restraint

Harmonic restraint measures are not common to all countries. Therefore, prepare the measures that meet the requirements of the destination country.
With products for Japan, on September, 1994, "Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system" and "Guidelines for harmonic restraint on household electrical appliances and general-purpose articles" established by the Agency for Natural Resources and Energy of the Ministry of Economy, Trade and Industry (the ex-Ministry of International Trade and Industry). According to those guidelines, the Japan Electrical Manufacturers' Association (JEMA) have prepared technical documents (procedure to execute harmonic restraint:
JEM-TR 198, JEM-TR 199 and JEM-TR 201) and have been requesting the users to understand the restraint and to cooperate with us. On January, 2004, it has been decided to exclude the general-purpose inverter and servo driver from the "Guidelines for harmonic restraint on household electrical appliances and general-purpose articles". After that, the "Guidelines for harmonic restraint on household electrical appliances and general-purpose articles" was abolished on September 6, 2004.
We are pleased to inform you that the procedure to execute the harmonic restraint on general-purpose inverter and servo driver was modified as follows.

1. All types of the general-purpose inverters and servo drivers used by specific users are under the control of the "Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage sytem". The users who are required to apply the guidelines must calculate the equivalent capacity and harmonic current according to the guidelines and must take appropriate countermeasures if the harmonic current exceeds a limit value specified in a contract demand. (Refer to JEM-TR 210 and JEM-TR 225.)
2. The "Guidelines for harmonic restraint on household electrical appliances and general-purpose articles" was abolished on September 6, 2004. However, based on conventional guidelines, JEMA applies the technical documents JEM-TR 226 and JEM-TR 227 to any users who do not fit into the "Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system" from a perspective on enlightenment on general harmonic restraint. The purpose of these guidelines is the execution of harmonic restraint at every device by a user as usual to the utmost extent.

<Remarks>

When using a reactor, be sure to install one reactor to one brushless amplifier.

List of peripheral equipments

Manufacturer	Tel No. / Home page	Peripheral components
TDK Corporation	+81-3-5201-7229 http://www.tdk.co.jp/	Noise filter for signal lines
Okaya Electric Industries Co. Ltd.	+81-3-4544-7040 http://www.okayatec.co.jp/	Surge absorber Noise filter
Sensata Technologies Japan Limited	+81-49-283-7575 www.sensata.com/japan	Circuit breaker (MCCB)
Japan Molex Inc.	+81-462-65-2313 http://www.molex.co.jp	Connector
J.S.T. Mfg. Co., Ltd.	$+81-45-543-1271$ http://www.jst-mfg.com/index_i.html	
Iwaki Musen Kenkyusho Co., Ltd.	+81-44-833-4311 http://www.iwakimusen.co.jp/	Regenerative resistor

* This list is for reference only and subject to change without notice.

Power cable (single phase 100 V, 200 V) with connector GV KV (50 w, 100 w) GP

When the following part number is specified in the order, the power cable is delivered with the product.

		50 W	90 W	100 W	130 W
GV series	100 V	MBEG5A1BCVC	MBEG9A1BCVC	-	MBEG1E1BCVC
	200 V	MBEG5A5BCVC	MBEG9A5BCVC		MBEG1E5BCVC
KV series	100 V	MBEK5A1BCVC	-	MBEK011BCVC	-
	200 V	MBEK5A5BCVC		MBEK015BCVC	
GP series	100 V	MBEG5A1BCPC	MBEG9A1BCPC	-	MBEG1E1BCPC
	200 V	MBEG5A5BCPC	MBEG9A5BCPC		MBEG1E5BCPC

- When supplying 3-phase power source to a 200 V brushless amplifier, use the supplied power cable and connect 2 conductors to L1 and L2.
- When supplying 3-phase power, use a power connection kit and connect three conductors to L1, L2 and L3.
- For location of L1, L2 and L3, refer to the wiring diagram on pages 17, 19 and 21 (GV series), pages 55, 57 and 59 (GP series).

\square Cable specification

Information

Contents
Guide to the international system of units (SI) 77
Selecting motor capacity 79
Conformance to international safety standards..... 93
Table of part numbers and options. 95
Index. 97
Sales office. 101

Guide to the international system of units (SI)

Organization of the system of units

Table 4 : Unit combined with SI unit

Table 3 : Derived unit with proper name

Other derived unit

Table 2: Auxiliary unit

Quantity	Name of unit	Symbol of unit
Plane angle	radian	rad
Solid angle	steradian	sr

Table 3: Major derived unit with proper name

Quantity	Name	Symbol of unit	Derivation from basic unit, auxiliary unit or other derived unit
Frequency	hertz	Hz	$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
Force	newton	N	$1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
Pressure, Stress	pascal	Pa	$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
Energy, Work, Amount of heat	joule	J	$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}$
Amount of work, Work efficiency, Power, Electric power	watt	W	$1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$
Electric charge, Amount of electricity	coulomb	C	$1 \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~s}$
Electric potential, Potential difference, Voltage, Electromotive force	volt	V	$1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$
Electrostatic capacity, Capacitance	farad	F	$1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}$
Electric resistance	ohm	Ω	$1 \Omega=1 \mathrm{~V} / \mathrm{A}$
Electric conductance	siemens	S	$1 \mathrm{~S}=1 \Omega \Omega^{-1}$
Magnetic flux	weber	Wb	$1 \mathrm{~Wb}=1 \mathrm{~V} \cdot \mathrm{~s}$
Magnetic flux density, Magnetic induction	tesla	T	$1 \mathrm{~T}=1 \mathrm{~Wb} / \mathrm{m}^{2}$
Inductance	henry	H	$1 \mathrm{H}=1 \mathrm{~Wb} / \mathrm{A}$
Degree centigrade (Celsius)	degree centigrade (Celsius)/degree	${ }^{\circ} \mathrm{C}$	$\mathrm{t}{ }^{\circ} \mathrm{C}=(\mathrm{t}+273.15) \mathrm{K}$
Luminous flux	lumen	Im	$1 \mathrm{Im}=1 \mathrm{~cd} \cdot \mathrm{sr}^{2}$
Illuminance	lux	Ix	$1 \mathrm{~lx}=1 \mathrm{~mm} / \mathrm{m}^{2}$

Table 4: Unit combined with SI unit

Quantity	Name	Symbol of unit
Time	minute	min
	hour	h
	day	d
Plane angle	degree	\circ
	minute	'
	liter	"
Weight	ton	I, L

Table 5: Prefix

Multiples powered to unit	Prefix	
	Name	Symbol
10^{15}	exa	E
10^{12}	peta	P
10^{9}	tera	T
10^{6}	giga	G
10^{3}	mega	M
10^{2}	kilo	k
10	hecto	h
10^{-1}	deca	da
10^{-2}	deci	d
10^{-3}	centi	c
10^{-6}	milli	m
10^{-9}	micro	$\mathrm{\mu}$
10^{-12}	nano	n
10^{-15}	pico	p
10^{-18}	femto	f
	atto	a

Major compatible unit

Quantity	Symbol of conventional unit	Symbol of SI unit and compatible unit	Conversion value
Length	μ (micron)	$\mu \mathrm{m}$	$1 \mu=1 \mu \mathrm{~m}$ (micrometer)
Acceleration	$\begin{gathered} \text { Gal } \\ \text { G } \end{gathered}$	$\begin{aligned} & \mathrm{m} / \mathrm{s}^{2} \\ & \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	$\begin{aligned} & 1 \mathrm{Gal}=10^{-2} \mathrm{~m} / \mathrm{s}^{2} \\ & 1 \mathrm{G}=9.80665 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$
Frequency	c/s, c	Hz	$1 \mathrm{c} / \mathrm{s}=\mathrm{Hz}$
Revolving speed, Number of revolutions	rpm	s^{-1} or min^{-1}, r/min	$1 \mathrm{rpm}=1 \mathrm{~min}^{-1}$
Weight Mass Weight flow rate Mass flow rate Specific weight Density Specific volume	kgf kgf/s - $\mathrm{kgf} / \mathrm{m}^{3}$ - $\mathrm{m}^{3} / \mathrm{kgf}$	$\begin{gathered} \mathrm{kg} \\ - \\ \mathrm{kg} / \mathrm{s} \\ - \\ \mathrm{kg} / \mathrm{m}^{3} \\ \mathrm{~m}^{3} / \mathrm{kg} \end{gathered}$	\}Same value \}Same value \}Same value Same value
Load Force Moment of force	kgf kgf dyn kgf-m	$\begin{gathered} \mathrm{N} \\ \mathrm{~N} \\ \mathrm{~N} \\ \mathrm{~N} \cdot \mathrm{~m} \end{gathered}$	$\begin{aligned} & 1 \mathrm{kgf}=9.80665 \mathrm{~N} \\ & 1 \mathrm{kgf}=9.80665 \mathrm{~N} \\ & 1 \mathrm{dyn}=10^{-5} \mathrm{~N} \\ & 1 \mathrm{kgf}-\mathrm{m}=9.806 \mathrm{~N} \cdot \mathrm{~m} \end{aligned}$
Pressure	$\mathrm{kgf} / \mathrm{cm}^{2}$ at (Engineering atmospheric pressure) atm (Atmospheric pressure) $\mathrm{mH} 2 \mathrm{o}, \mathrm{mAq}$ mmHg Torr	Pa, bar ${ }^{(1)}$ or kgf/cm ${ }^{2}$ Pa Pa Pa Pa or $\mathrm{mmHg}^{(2)}$ Pa	$\begin{aligned} & 1 \mathrm{kgf} / \mathrm{cm}^{2}=9.80665 \times 10^{4} \mathrm{~Pa} \\ &=0.980665 \mathrm{bar} \\ & 1 \mathrm{at}=9.80665 \times 10^{4} \mathrm{~Pa} \\ & 1 \mathrm{~atm}= 1.01325 \times 10^{5} \mathrm{~Pa} \\ & 1 \mathrm{mH} \mathrm{H}_{2} \mathrm{O}=9.80665 \times 10^{3} \mathrm{~Pa} \\ & 1 \mathrm{mmHg}= 133.322 \mathrm{~Pa} \end{aligned}$
Stress Elastic modulus	$\mathrm{kgf} / \mathrm{mm}^{2}$ $\mathrm{kgf} / \mathrm{cm}^{2}$ $\mathrm{kgf} / \mathrm{m}^{2}$	Pa or $\mathrm{N} / \mathrm{m}^{2}$ Pa or $\mathrm{N} / \mathrm{m}^{2}$ Pa or $\mathrm{N} / \mathrm{m}^{2}$	$\begin{aligned} 1 \mathrm{kgf} / \mathrm{mm}^{2} & =9.80665 \times 10^{6} \mathrm{~Pa} \\ & =9.80665 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \\ 1 \mathrm{kgf} / \mathrm{cm}^{2} & =9.80665 \times 10^{4} \mathrm{~Pa} \\ & =9.80665 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\ 1 \mathrm{kgf} / \mathrm{m}^{2} & =9.80665 \mathrm{~Pa}=9.80665 \mathrm{~N} / \mathrm{m}^{2} \\ 1 \mathrm{kgf} / \mathrm{cm}^{2} & =9.80665 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \end{aligned}$
Energy, Work	kgf-m erg	J (joule) J	$\begin{aligned} & 1 \mathrm{kgf} \cdot \mathrm{~m}=9.80665 \mathrm{~J} \\ & 1 \mathrm{erg}=10^{-7} \mathrm{~J} \end{aligned}$
Work efficiency, Power	kgf-m/s PS	W (watt) W	$\begin{aligned} & 1 \mathrm{kgf}-\mathrm{m} / \mathrm{s}=9.80665 \mathrm{~W} \\ & 1 \mathrm{PS}=0.7355 \mathrm{~kW} \end{aligned}$
Viscosity Kinetic viscosity	$\begin{gathered} \mathrm{PP} \\ \mathrm{St} \end{gathered}$	$\begin{gathered} \mathrm{Pa} \cdot \mathrm{~s} \\ \mathrm{~mm}^{2} / \mathrm{s} \end{gathered}$	$\begin{aligned} & 1 \mathrm{P}=0.1 \mathrm{~Pa} \cdot \mathrm{~s} \\ & 10^{-2} \mathrm{St}=1 \mathrm{~mm}^{2} / \mathrm{s} \end{aligned}$
Thermodynamic temperature Temperature interval	$\begin{gathered} \mathrm{K} \\ \mathrm{deg} \end{gathered}$	$\begin{gathered} \text { K (kelvin) } \\ \mathrm{K}^{(3)} \end{gathered}$	$\begin{aligned} & 1 \mathrm{~K}=1 \mathrm{~K} \\ & 1 \mathrm{deg}=1 \mathrm{~K} \end{aligned}$
Amount of heat Heat capacity Specific heat, Specific heat capacity Entropy Specific entropy Internal energy (Enthalpy) Specific internal energy (Specific enthalpy)	cal $\mathrm{cal} /{ }^{\circ} \mathrm{C}$ $\mathrm{cal} /\left(\mathrm{kgf} \cdot{ }^{\circ} \mathrm{C}\right)$ $\mathrm{cal} / \mathrm{K}$ $\mathrm{cal} /(\mathrm{kgf} \cdot \mathrm{K})$ cal $\mathrm{cal} / \mathrm{kgf}$	J $\mathrm{J} / \mathrm{K}^{(3)}$ $\mathrm{cal} /(\mathrm{kgf} \cdot \mathrm{K})^{(3)}$ J / K $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$ J J / kg	$\begin{aligned} & 1 \mathrm{cal}=4.18605 \mathrm{~J} \\ & 1 \mathrm{cal} /{ }^{\circ} \mathrm{C}=4.18605 \mathrm{~J} / \mathrm{K} \\ & 1 \mathrm{cal} /\left(\mathrm{kgf} \cdot{ }^{\circ} \mathrm{C}\right)=4.18605 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \\ & 1 \mathrm{cal} / \mathrm{K}=4.18605 \mathrm{~J} / \mathrm{K} \\ & 1 \mathrm{cal} /(\mathrm{kgf} \cdot \mathrm{~K})=4.18605 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \\ & 1 \mathrm{cal}=4.18605 \mathrm{~J} \\ & 1 \mathrm{cal} / \mathrm{kgf}=4.18605 \mathrm{~J} / \mathrm{kg} \end{aligned}$
Heat flux Heat flux density Thermal conductivity Coefficient of thermal conductivity	$\begin{gathered} \mathrm{cal} / \mathrm{h} \\ \mathrm{cal} /\left(\mathrm{h} \cdot \mathrm{~m}^{2}\right) \\ \mathrm{cal} /\left(\mathrm{h} \cdot \mathrm{~m} \cdot{ }^{\circ} \mathrm{C}\right) \\ \mathrm{cal} /\left(\mathrm{h} \cdot \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} / \mathrm{m}^{2} \\ \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K})^{(3)} \\ \mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)^{(3)} \end{gathered}$	$\begin{aligned} & 1 \mathrm{kcal} / \mathrm{h}=1.16279 \mathrm{~W} \\ & 1 \mathrm{kcal} /\left(\mathrm{h} \cdot \mathrm{~m}^{2}\right)=1.16279 \mathrm{~W} / \mathrm{m}^{2} \\ & 1 \mathrm{kcal} /\left(\mathrm{h} \cdot \mathrm{~m} \cdot{ }^{\circ} \mathrm{C}\right)=1.16279 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K}) \\ & 1 \mathrm{kcal} /\left(\mathrm{h} \cdot \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)=1.16279 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \end{aligned}$
Intensity of magnetic field Magnetic flux Magnetic flux density	$\begin{gathered} \mathrm{Oe} \\ \mathrm{Mx} \\ \mathrm{Gs}, \mathrm{G} \end{gathered}$	A/m Wb (weber) T (tesla)	$\begin{aligned} & 1 \mathrm{Oe}=10^{3} /(4 \pi) \mathrm{A} / \mathrm{m} \\ & 1 \mathrm{Mx}=10^{-8} \mathrm{~Wb} \\ & 1 \mathrm{Gs}=10^{-4} \mathrm{~T} \end{aligned}$

Note

(1) Applicable to liquid pressure. Also applicable to atmospheric pressure of meteorological data, when "bar" is used in international standard.
(2) Applicable to scale or indication of blood pressure manometers.
(3) "C" can be substituted for "K".

Selecting motor capacity

Flow of motor selection

1. Definition of mechanism to be driven by motor.

Define details of individual mechanical components (ball screw length, lead and pulley diameters, etc.)

<Typical mechanism>

Ball screw mechanism

Belt mechanism

Rack \& pinion, etc.

2. Definition of operating pattern.

Acceleration/deceleration time, Constant-velocity time, Stop time, Cycle time, Travel distance

Note) Selection of motor capacity significantly varies depending on the operating pattern.
The motor capacity can be reduced if the acceleration/deceleration time and stop time are set as long as possible.

3. Calculation of load inertia and inertia ratio.

Calculate load inertia for each mechanical component. (Refer to "General inertia calculation method" described later.)
Divide the calculated load inertia by the inertia of the selected motor to check the inertia ratio.
For calculation of the inertia ratio, note that the catalog value of the motor inertia is expressed as " $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ ".

4. Calculation of motor velocity

Calculate the motor velocity from the moving distance, acceleration / deceleration time and constant-velocity time.

5. Calculation of torque

Calculate the required motor torque from the load inertia, acceleration/deceleration time and constant-velocity time.
6. Calculation of motor

Select a motor that meets the above 3 to 5 requirements.

Description on the items related to motor selection

1. Torque

(1) Peak torque

Indicate the maximum torque that the motor requires during operation (mainly in acceleration and deceleration steps). The reference value is 80% or less of the maximum motor torque. If the torque is a negative value, a regenerative discharge resistor may be required.

(2) Traveling torque, Stop holding torque

Indicates the torque that the motor requires for a long time. The reference value is 80% or less of the rated motor torque. If the torque is a negative value, a regenerative discharge resistor may be required.

Traveling torque calculation formula for each mechanism

Ball screw mechanism

Traveling torque
$\mathbf{T}_{\mathbf{f}}=\frac{\mathbf{P}}{2 \pi \eta}(\mu \mathrm{~g} \mathbf{W}+\mathbf{F})$
W: Weight [kg]
P : Lead [m]
F : External force [N]
η : Mechanical efficiency
μ : Coefficient of friction
g : Acceleration of gravity $9.8\left[\mathrm{~m} / \mathrm{s}^{2}\right]$

Belt mechanism

W: Weight [kg]
\mathbf{P} : Pulley diameter [m]
F: External force [N]
$\mathbf{T} \mathbf{f}=\frac{\mathbf{D}}{2 \eta}(\mu \mathrm{~g} \mathbf{W}+\mathbf{F})$
η : Mechanical efficiency
μ : Coefficient of friction
g : Acceleration of gravity $9.8\left[\mathrm{~m} / \mathrm{s}^{2}\right]$

(3) Effective torque

Indicates a root-mean-square value of the total torque required for running and stopping the motor per unit time. The reference value is approx. 80% or less of the rated motor torque.

$$
\text { Trms }=\sqrt{\frac{T_{a^{2}} \times t a+T^{2} \times t b+T d^{2} \times t d}{t c}}
$$

$\mathbf{T a}:$ Acceleration torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathbf{t a}:$ Acceleration time $[\mathrm{s}]$	$\mathbf{t c}:$ Cycle time $[\mathrm{s}]$
$\mathbf{T f}:$ Traveling torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathbf{t b}:$ Constant-velocity time $[\mathrm{s}]$	(Run time + Stop time)
$\mathbf{T d}:$ Deceleration torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathbf{t d}:$ Deceleration time $[\mathrm{s}]$	

2. Motor velocity

Maximum velocity

Maximum velocity of motor in operation: The reference value is the rated velocity or lower value.
When the motor runs at the maximum velocity, you must pay attention to the motor torque and temperature rise.
For actual calculation of motor velocity, see "Example of motor selection" described later.

Selecting motor capacity

Description on the items related to motor selection

3. Inertia and inertia ratio

Inertia is like the force to retain the current moving condition.
Inertia ratio is calculated by dividing load inertia by rotor inertia.
Generally, for motors with 750 W or lower capacity, the inertia ratio should be " 20 " or less. For motors with 1000 W or higher capacity, the inertia ratio should be " 10 " or less.
If you need quicker response, a lower inertia ratio is required.
(For example, when the motor takes several seconds in acceleration step, the inertia ratio can be further increased.)

General inertia calculation method

Shape	J calculation formula	Shape	J calculation formula
Disk	$\mathbf{J}=\frac{1}{8} \mathbf{W} \mathbf{D}^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ W: Weight [kg] D: Outer diameter [m]	Hollow cylinder	$\mathbf{J}=\frac{1}{8} \mathbf{W}\left(\mathbf{D}^{2}+\mathbf{d}^{2}\right)\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right]$ W: Weight [kg] D : Outer diameter [m] d : Inner diameter [m]
	$\mathbf{J}=\frac{1}{12} \mathbf{W}\left(\mathbf{a}^{2}+\mathbf{b}^{2}\right)\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right]$ W: Weight [kg] $\mathbf{a}, \mathbf{b}, \mathbf{c}$: Side length [m]	Uniform rod	$J=\frac{1}{48} W\left(3 D^{2}+4 L^{2}\right)\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right]$ W: Weight [kg] D: Outer diameter [m] L : Length [m]
Straight rod	$\mathbf{J}=\frac{1}{3} \mathbf{W} L^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ W: Weight [kg] L: Length [m]	Separated rod	$\mathbf{J}=\frac{1}{8} \mathbf{W ~}^{2}+\mathbf{W} \mathbf{S}^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ W: Weight [kg] D : Outer diameter [m] S: Distance [m]
Reduction gear	Inertia on shaft "a" $J=J_{1}+\left(\frac{n_{2}}{n_{1}}\right)^{2} J_{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ n 1 : A rotational speed of a shaft [r/min] n2 : A rotational speed of b shaft [r/min]		
Conveyor	$J=\frac{1}{4} W D^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2]}\right.$ W: Workpiece weight on conveyor [kg] D : Drum diameter [m] * Excluding drum J	Ball screw	$\mathbf{J}=\mathbf{J B}+\frac{\mathbf{W} \cdot \mathbf{P}^{2}}{4 \pi^{2}}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ W: Weight [kg] P : Lead [m] JB: J of ball screw

If weight $(\mathrm{W}[\mathrm{kg}])$ is unknown, calculate it with the following formula:
Weight $\quad \mathrm{W}[\mathrm{kg}]=$ Density $\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right] \times$ Volume $\mathrm{V}\left[\mathrm{m}^{3}\right]$
Density of each material
Iron $\rho=7.9 \times 103\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$
Aluminum $\rho=2.8 \times 103\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$
Brass $\rho=8.5 \times 103\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$

To drive ball screw mechanism

1. Example of motor selection for driving ball screw mechanism

Workpiece weight
$\mathrm{W}_{\mathrm{A}}=\mathbf{1 0}[\mathrm{kg}]$
Ball screw length
$\mathrm{BL}=0.5[\mathrm{~m}]$
Ball screw diameter
Ball screw lead
$\mathrm{BD}=0.02[\mathrm{~m}]$
$\mathrm{Bp}=0.02[\mathrm{~m}]$
Ball screw efficiency

Travel distance 0.3 [m]
Coupling inertia Jc = $10 \times 10^{-6}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ (Use manufacturer-specified catalog value, or calculation value.)

2. Running pattern :

Acceleration time
ta $=0.7[\mathrm{~s}]$
Constant-velocity time
Deceleration time
Cycle time
tb $=1.3[\mathrm{~s}]$
td $=0.7[\mathrm{~s}]$
tc $=\mathbf{4}[\mathrm{s}]$
Travel distance 0.3 [m]

3. Ball screw weight

$$
\begin{aligned}
\mathrm{Bw} & =\rho \times \pi \times\left(\frac{\mathrm{Bd}}{2}\right)^{2} \times \mathrm{BL}=7.9 \times 10^{3} \times \pi \times\left(\frac{0.02}{2}\right)^{2} \times 0.5 \\
& =1.24[\mathrm{~kg}]
\end{aligned}
$$

4. Load inertia

$$
\begin{aligned}
\mathrm{JL} & =\mathrm{Jc}+\mathrm{JB}+\mathrm{Jw}=\mathrm{Jc}+\frac{1}{8} \mathrm{Bw} \times \mathrm{BD}^{2}+\frac{\mathrm{WA} \cdot \mathrm{BP}^{2}}{4 \pi^{2}} \\
& =0.00001+\left(1.24 \times 0.02^{2}\right) / 8+10 \times 0.02^{2} / 4 \pi^{2} \\
& =1.73 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\end{aligned}
$$

5. Provisional motor selection

In case of GP series 50 W , gear ratio $1 / 5$. Permissible load inertia moment $=3.42 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$

6. Inertia moment compared

Permissible load inertia moment $=3.42 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]>$ Load inertia
$=1.73 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ Cleared specification

7. Calculation of maximum velocity (Vmax)

$\frac{1}{2} \times$ Acceleration time \times Vmax + Constant-velocity time $\times V \max +\frac{1}{2} \times$ Deceleration time \times Vmax $=$ Travel distance
$\frac{1}{2} \times 0.7 \times \mathrm{Vmax}+1.3 \times \mathrm{Vmax}+\frac{1}{2} \times 0.7 \times \mathrm{Vmax}=0.3$
$2.0 \times \mathrm{Vmax}=0.3$
$V \max =0.3 / 2.0=0.15[\mathrm{~m} / \mathrm{s}]$
8. Calculation of motor velocity ($\mathrm{N}[\mathrm{r} / \mathrm{min}]$) Ball screw lead per resolution: $\mathrm{Bp}=0.02[\mathrm{~m}]$
$\mathrm{N}=0.15 / 0.02=7.5[\mathrm{r} / \mathrm{s}]$
$=7.5 \times 60=450[\mathrm{r} / \mathrm{min}]<600[\mathrm{r} / \mathrm{min}]$ (rated rotation speed of GP series 50 W , gear ratio $1 / 5$)

9. Calculation of torque

Traveling torque $\quad \mathbf{T f}_{\mathbf{f}}=\frac{\mathbf{B p}}{2 \pi \mathbf{B}_{\boldsymbol{\eta}}}\left(\mu \mathrm{g} \mathbf{W}_{\mathbf{A}}+\mathbf{F}\right)=\frac{0.02}{2 \pi \times 0.9}(0.1 \times 9.8 \times 10+0)$

$$
=0.035[\mathrm{~N} \cdot \mathrm{~m}]
$$

Acceleration torque $\quad \mathrm{Ta}=\frac{\mathrm{JL} \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Acceleration time }[\mathrm{s}]}+$ Traveling torque $=\frac{1.73 \times 10^{-4} \times 2 \pi \times 7.5}{0.7}+0.035$

$$
=0.012+0.035=0.047[\mathrm{~N} \cdot \mathrm{~m}]
$$

Deceleration torque $\mathrm{T}_{\mathrm{d}}=\frac{\mathrm{JL} \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Deceleration time }[\mathrm{s}]}-$ Traveling torque $=\frac{1.73 \times 10^{-4} \times 2 \pi \times 7.5}{0.7}-0.035$

$$
=0.012-0.035=-0.023[\mathrm{~N} \cdot \mathrm{~m}]
$$

Selecting motor capacity

10. Verification of maximum torque

Acceleration torque $=\mathbf{T a}$
$=0.047[\mathrm{~N} \cdot \mathrm{~m}]<0.71[\mathrm{~N} \cdot \mathrm{~m}]$ (GP series $50 \mathrm{~W}, 1 / 5$ gear, Permissible torque at output shaft of gear head)

11. Verification of effective torque

$$
\begin{aligned}
\text { Trms } & =\sqrt{\frac{\mathbf{T a}^{2} \times \mathbf{t a}+\mathbf{T} \mathbf{f}^{2} \times \mathbf{t b}+\mathbf{T d}^{2} \times \mathbf{t d}}{\mathbf{t} \mathbf{c}}} \\
& =\sqrt{\frac{0.047^{2} \times 0.7+0.035^{2} \times 1.3+(-0.023)^{2} \times 0.7}{4}} \\
& =0.030[\mathrm{~N} \cdot \mathrm{~m}]<0.71[\mathrm{~N} \cdot \mathrm{~m}] \quad(\mathrm{GP} \text { series } 50 \mathrm{~W}, 1 / 5 \text { gear, Permissible torque at output shaft of gear head) }
\end{aligned}
$$

12. Load torque, load inertia moment are cleared specification.

Example of motor selection for timing belt mechanism

1.Mechanism

Workpiece weight
Pulley diameter
Pulley weight
Mechanical efficiency
Coupling inertia

WA=2[kg] (including belt)
$\mathrm{Pd}=0.05[\mathrm{~m}]$
$\mathbf{W P}=0.5[\mathrm{~kg}]$ (Use manufacturer-specified catalog value, or calculation value.)
$B \eta=0.8$
Jc $=\mathbf{0}$ (Direct connection to motor shaft)

2. Running pattern

Acceleration time
ta $=1.0$ [s]
Constant-velocity time
tb $=1.0[\mathrm{~s}]$
Deceleration time
td $=1.0[\mathrm{~s}]$
Cycle time
tc $=\mathbf{4}[\mathrm{s}]$
Travel distance 1 [m]

3. Load inertia

$$
\begin{aligned}
\mathrm{JL} & =\mathrm{Jc}+\mathrm{JB}+\mathrm{JP} \\
& =\mathrm{Jc}+\frac{1}{4} \mathbf{W A} \times \mathrm{PD}^{2}+\frac{1}{8} \mathbf{W} \mathbf{P} \times \mathrm{PD}^{2} \times 2 \\
& =0+\frac{1}{4} \times 2 \times 0.05^{2}+\frac{1}{8} \times 0.5 \times 0.05^{2} \times 2 \\
& =0.00156=15.6 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\end{aligned}
$$

4. Provisional motor selection

In case of GP series 50 W , gear ratio $1 / 15$. Permissible load inertia moment $=30.6 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
5. Inertia moment compared
$30.6 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]>15.6-10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$

6. Calculation of maximum velocity (Vmax)

$\frac{1}{2} \times$ Acceleration time \times Vmax + Constant-velocity time \times Vmax $+\frac{1}{2} \times$ Deceleration time \times Vmax $=$ Travel distance
$\frac{1}{2} \times 1.0 \times V \max +1.0 \times V \max +\frac{1}{2} \times 1.0 \times V \max =1$

$$
\begin{aligned}
2.0 \times \operatorname{Vmax} & =1 \\
V \max & =1 / 2.0=0.5[\mathrm{~m} / \mathrm{s}]
\end{aligned}
$$

7. Calculation of motor velocity ($\mathrm{N}[\mathrm{r} / \mathrm{min}]$)

A single rotation of pulley : $\pi \times \mathrm{PD}=0.157[\mathrm{~m}]$

```
\(\mathrm{N}=0.5 / 0.157=3.18[\mathrm{r} / \mathrm{s}]\)
    \(=3.18 \times 60=191[\mathrm{r} / \mathrm{min}]<200[\mathrm{r} / \mathrm{min}]\) (rated rotation speed of GP series 50 W , gear ratio \(1 / 15\) )
```


8. Calculation of torque

Traveling torque

$$
\begin{aligned}
\mathbf{T}_{\mathrm{f}} & =\frac{\mathbf{P D}}{2 \eta}\left(\mu \mathrm{~g} \mathbf{W}_{\mathrm{A}}+\mathbf{F}\right)=\frac{0.05}{2 \times 0.8}(0.1 \times 9.8 \times 2+0) \\
& =0.061[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
$$

Acceleration torque $\quad \mathbf{T a}=\frac{\mathrm{JL} \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Acceleration time }[\mathrm{s}]}+$ Traveling torque

$$
\begin{aligned}
& =\frac{15.6 \times 10^{-4} \times 2 \pi \times 3.18}{1.0}+0.061 \\
& =0.031+0.061=0.092[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
$$

Deceleration torque $\quad \mathbf{T d}=\frac{\mathrm{JL} \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Deceleration time }[\mathrm{s}]}$ - Traveling torque

$$
\begin{aligned}
& =\frac{15.6 \times 10^{-4} \times 2 \pi \times 3.18}{1.0}-0.061 \\
& =0.031-0.061=-0.03[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
$$

9. Verification of maximum torque

Acceleration torque

$$
\mathbf{T a}=0.092[\mathrm{~N} \cdot \mathrm{~m}]<2.2[\mathrm{~N} \cdot \mathrm{~m}](\mathrm{GP} \text { series } 50 \mathrm{~W}, 1 / 15 \text { gear, Permissible torque at output shaft of gear head })
$$

10. Verification of effective torque

$$
\begin{aligned}
\text { Trms } & =\sqrt{\frac{\mathbf{T a}^{2} \times \mathbf{t a}+\mathbf{T} \mathbf{f}^{2} \times \mathbf{t b}+\mathbf{T \mathbf { d } ^ { 2 } \times \mathbf { t d }}}{\mathbf{t} \mathbf{c}}} \\
& =\sqrt{\frac{0.092^{2} \times 1.0+0.061^{2} \times 1.0+(-0.03)^{2} \times 1.0}{4}} \\
& =0.057[\mathrm{~N} \cdot \mathrm{~m}]<2.2[\mathrm{~N} \cdot \mathrm{~m}](\mathrm{GP} \text { series } 50 \mathrm{~W}, 1 / 15 \text { gear, Permissible torque at output shaft of gear head) }
\end{aligned}
$$

11. A GP series $50 \mathrm{~W}, 1 / 15$ gear selected by following the above procedure will cause no problem.

Request for motor selection I : Ball screw drive

1. Driven mechanism and running data

1) Travel distance of the work load per one cycle

2) Cycle time

(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time

$\mathrm{ta}:$	s
$\mathrm{td}:$	s
$\mathrm{ts}:$	s
$\mathrm{V}:$	mm / s

7) External force
8)

Positioning accuracy of the work load
9) Total weight of the work load and the table
10) Power supply voltage
6) Max. velocity
11) Diameter of the ball screw
12) Total length of the ball
13) Lead of the ball screw

14) Traveling direction
(horizontal, vertical etc.) \square
2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

	$\frac{\text { Company name : }}{\text { Department/Section : }}$Name : Address : Tel : Fax : E-mail address:

Request sheet for motor selection

Request for motor selection II: Timing pulley + Ball screw drive

1. Driven mechanism and running data

1) Travel distance of the work load per one cycle
2) Cycle time
(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force
8)

Positioning accuracy of the work load
9)

Total weight of the work load and the table
10) Power supply voltage
11) Diameter of the ball screw
12) Total length of the ball screw
13) Lead of the ball screw
14) Traveling direction (horizontal, vertical etc.)

16) Weight of the pulley
(or item 17) and 18))
17) Width of the pulley
18) Material of the pulley
19) Weight of the belt

Running pattern

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

	$\frac{\text { Company name : }}{\text { Department/Section : }}$ $\frac{\text { Address : }}{\text { Tel : }}$ $\frac{\text { Fax : }}{\text { E-mail address: }}$

Request for motor selection III : Belt drive

1. Driven mechanism and running data

1) Travel distance

2) Cycle time

(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force

8) External force

9) Positioning accuracy of the work load

10) Power supply voltage
11) Weight of the belt
12) Diameter of the driving pulley
13) Total weight of the pulley
) Total weight of the work load

(or item 14) and 15))
14) Width of the pulley

15) Material of the pulley

16)

Traveling direction
(horizontal, vertical etc.)

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

$\frac{\text { Company name : }}{\text { Department/Section : }}$Address : Tel : Fax : E-mail address:

Request sheet for motor selection

Request for motor selection IV : Timing pulley + Belt drive

1. Driven mechanism and running data

1) Travel distance of the work load per one cycle
2) Cycle time
(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force
8) Positioning accuracy of the work load
9) Total weight of the work load and the table
10) Power supply voltage
11) Weight of motor side belt
 (or item 14) and 15))
12) Width of the belt

13) Material of the pulley \square

		Motor side		Belt side	
16)	Diameter of the pulley	D3:	mm	D4:	mm
17)	Weight of the pulley	W_{3} :	kg	W_{4} :	kg

(or item 18) and 19))
18) Width of the pulley
19) Material of the pulley
20) Weight of the belt

21) Traveling direction (horizontal, vertical etc.)

Running pattern

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

	Company name : Department/Section : Name : Address : Tel : Fax : E-mail address:

Request for motor selection V : Turntable drive

1. Driven mechanism and running data

1) Travel distance of the work load
per one cycle
2) Cycle time
(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
ta:

6) Max. rotational speed of the table
$\mathrm{v}: \quad \mathrm{deg} / \mathrm{s}$
(or)

7) Positioning accuracy of the work load

8) Weight of one work load
9) Driving radius of the center of gravity of the work
10) Diameter of the table
11) Mass of the table
12) Diameter of the table support
13) Power supply voltage

14) Dimensions of the work load
15) Number of work loads

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

Company name : Department/Section : Name : Address : Tel : Fax : E-mail address:

Request for motor selection VI : Timing pulley + Turntable drive

1. Driven mechanism and running data

1) Travel distance of the work load per one cycle
2) Cycle time
(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. rotational speed of the table
$\mathrm{v}: \quad \mathrm{deg} / \mathrm{s}$

	(or)	V :	r / s
	Positioning accuracy of the		
work load	\pm	deg	
8) Weight of one work load	$\mathrm{W}_{\mathrm{A}}:$	kg	

9) Driving radius of the center of
gravity of the work
10) Diameter of the table
11) Mass of the table
12) Diameter of the table support

13) Power supply voltage

14) Number of work loads
pcs

	Motor side		Turntable side	
	16) Diameter of the pulley	$\mathrm{D}_{2}:$	mm	$\mathrm{D}_{3}:$
		mm		
17) Weight of the pulley	$\mathrm{W}_{2}:$	kg	$\mathrm{W}_{3}:$	kg

(or item 18) and 19))
18) Width of the pulley
19) Material of the pulley
20) Weight of the belt

Running pattern

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

	Company name : Department/Section : Name : Address : Tel : Fax : E-mail address:

Request sheet for motor selection

Request for motor selection VII : Roller feed drive

1. Driven mechanism and running data

1) Travel distance of the work load per one cycle
$\ell_{1}: \quad \mathrm{mm}$
2) Cycle time

(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity

7) External pulling force
8)

Positioning accuracy of the work load
9) Number of rollers
10) Power supply voltage
11) Diameter of the roller
12) Mass of the roller

(or item 13) and 14))
13) Width of the roller
14) Material of the roller

\square
2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

	Company name : Department/Section : Address : Tel : Fax : E-mail address:

Request for motor selection VIII : Driving with Rack \& Pinion

1. Driven mechanism and running data

1) Travel distance of the work load per one cycle
2) Cycle time

(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity

ta:	s
$\mathrm{td}:$	s
$\mathrm{ts}:$	s
$\mathrm{V}:$	mm / s

7) External force

8) Positioning accuracy of the work load
9) Total weight of the work load
11) Diameter of the pinion
12) Mass of the pinion
13)

Traveling direction (horizontal, vertical, etc.)

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

	$\frac{\text { Company name : }}{\text { Department/Section : }}$Name : Address : Tel : Fax : E-mail address:

Conformance to international safety standards

Conformance to international standards (KV series : Under application)

EC Directives

The EC directives apply to all such electronic products as those having specific functions and directly sold to general consumers in EU countries. These products are required to meet the EU unified standards and to be furnished with CE marking.
Our brushless motor and brushless amplifier meet the EC Directives for Low Voltage Equipment so that the machine or equipment comprising our brushless motor and brushless amplifier can meet relevant EC Directives.

Conformity to UL Standards

Observe the following conditions of (1) and (2) to make the system conform to UL508C (E164620).
(1) Use the driver in an environment of Pollution Degree 2 or 1 prescribed in IEC60664-1. (e.g. Install in the control box with IP54 enclosure.)
(2) Make sure to install a circuit breaker or fuse which are UL recognized (Listed (1L) marked) between the power supply and the noise filter.
Use a copper cable with temperature rating of 75 or higher.

EMC Directives

Our brushless motor and brushless amplifier can meet EMC Directives and related standards. However, to meet these requirements, the systems must be limited with respect to configuration and other aspects, e.g. the installation and some special wiring conditions must be met. This means that in some cases machines and equipment comprising our brushless motor and brushless amplifier may not satisfy the requirements for wiring and grounding conditions specified by the EMC Directives. Therefore, conformance to the EMC Directives (especially the requirements for emission noise and noise terminal voltage) should be examined based on the final products that include our system.

		Applicable standards	Installation condition
UL	UL1004 UL508C	Standard for electric motor Standard for electric converter equipment	Class I equipment Pollution degree 2 SCCR * ${ }^{\text {* }}$
$\begin{gathered} \text { CSA } \\ \text { (c-UL) } \end{gathered}$	C22.2 No. 100	Standard for electric motor	
CE	$\begin{aligned} & \text { EN61800-5-1 } \\ & \text { EN60034-1 } \\ & \text { EN60034-5 } \\ & \text { EN61800-3 } \\ & \text { EN55011 } \\ & \text { EN61000-6-2 } \end{aligned}$	Adjustable speed electrical power drive systems. - Safety requirements. Electrical, thermal and energy Standard for rotary electric machine (low voltage directive) Standard for rotary electric machine (low voltage directive) Adjustable speed electrical power drive systems. - EMC requirements and specific test methods Radio interference wave characteristics of industrial, scientific, and medical high-frequency equipment Standards for immunity in industrial environment (EMC directive)	Overvoltage category II Class I equipment Pollution degree 2
CCC	GB12350	Motor safety standard	
KC	Korea Radio Law *2	Class A Instrument (commercial broadcast communications equipment)	-

[^6]A 급 기기 (업무용 방송통신기자재)
이 기기는 업무용(A 급) 전자파적합기기로서 판매자
또는 사용자는 이 점을 주의하시기 바라며, 가정외의
지역에서 사용하는 것을 목적으로 합니다.
(대상기종 : Brushless Amplifier)

Configuration of peripheral equipment

Power supply	• 100 V system: Single phase $100 \mathrm{~V} \pm 10 \%$ to $120 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ 200 V system: Single/3-phase $200 \mathrm{~V} \pm 10 \%$ to $240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ • Use the equipment under the environment of overvoltage category II specified by IEC60664-1. In order to obtain overvoltage category III, insert a transformer conforming to EN standard or IEC standard to the input of brushless motor. - Use an electric wire size suitable to EN60204-1.
MCCB (breaker) Fuse	Be sure to connect a specified MCCB certified by IEC standard and UL, or a fuse certified by UL between power supply and noise filter. Observance of this condition allows conformance with UL508C (file No. E164620).
Noise filter	When installing one noise filter at the power supply for more than one brushless motor used, contact the manufacturer of noise filter.
Surge absorber	Install a surge absorber on the primary side of noise filter. However, in performing the voltage resistance test of machine and equipment, be sure to remove the surge absorber; otherwise, the surge absorber may be ruptured.
Grounding	Be sure to connect the grounding Terminal of brushless amplifier and protective grounding wire (PE) of system for preventing electric shock. Do not tighten the grounding wires together but connect them individually.

Wiring of peripheral equipment

Ferrite core (Noise filter for signal line)
Option DVOP1460 (*Qty.: 4) (part No.: ZCAT3035-1330/TDK Corporation)

List of compatible peripheral equipment

| Part name | Optional parts
 number (option) | Manufacturer's
 parts number | Qty. | Reference |
| :--- | :---: | :---: | :---: | :---: | :---: |
| page | | | | |

Table of model numbers and options

GV series

Power supply	Rated rotation speed （r／min）	output （W）	Motor	Gear head （Note 1）	Brushless amplifier	Brushless amplifier $\binom{$ supplied with }{ power cable } （Note 2）	External regenerative resistor	Noise filter	Surge absorber	Reactor
Single phase 100 V	3000	50	MBMU5AZAX	MX8G■B	MBEG5A1BCV	MBEG5A1BCVC	for 100 V DV0P2890	for single phase power supply DVOP4170	for single phase power supply DVOP4190	for single phase power supply DVOP227
			MBMU5AZAS	－						
		90	MBMU9A1AZ	$\begin{aligned} & \text { MZ9GロB } \\ & \text { MY9GロB } \end{aligned}$	MBEG9A1BCV	MBEG9A1BCVC				
			MBMU9A1AS	－						
		130	MBMU1E1AZ	$\begin{aligned} & \text { MZ9G } \square B \\ & \text { MY9G } \square B \end{aligned}$	MBEG1E1BCV	MBEG1E1BCVC				
			MBMU1E1AS	－						
Single phase／ 3－phase 200 V		50	MBMU5AZAX	MX8GロB	MBEG5A5BCV	MBEG5A5BCVC	for 200 VDVOPM20068	for single phase power supply DVOP4170 for 3－phase power supply DVOPM20042	for single phase power supply DVOP4190 for 3－phase power supply DVOP1450	for single phase power supply DVOP227 for 3－phase power supply DVOP220
			MBMU5AZAS	－						
		90	MBMU9A2AZ	$\begin{aligned} & \text { MZ9G } \square B \\ & \text { MY9G } \square B \end{aligned}$	MBEG9A5BCV	MBEG9A5BCVC				
			MBMU9A2AS	－						
		130	MBMU1E2AZ	MZ9G■B MY9G $\square B$	MBEG1E5BCV	MBEG1E5BCVC				
			MBMU1E2AS	－						

KV series

Power supply	Rated rotation speed （r／min）	output （W）	Motor （Note 3）	Gear head	Brushless amplifier	Brushless amplifier $\binom{$ supplied with }{ power cable } （Note 2）	External regenerative resistor	Noise filter	Surge absorber	Reactor
Single phase 100 V	3000	50	MBMS5AZBLO	－	MBEK5A1BCV	MBEK5A1BCVC	for 100 V DVOP2890	for single phase power supply DVOP4170	for single phase power supply DVOP4190	for single phase power supply DVOP227
		100	MBMS011BLO		MBEK011BCV	MBEK011BCVC				
		200	MBMS021BLO		MBEK021BCV	－				for single phase power supply DVOP228
Single phase／ 3－phase 200 V		50	MBMS5AZBLO		MBEK5A5BCV	MBEK5A5BCVC		for single phase power supply	for single phase power supply	for single phase power supply
		100	MBMS012BLO		MBEK015BCV	MBEK015BCVC		DVOP4170 for 3－phase	DVOP4190 for 3－phase	DVOP227 for 3－phase
		200	MBMS022BLO		MBEK025BCV		$\begin{aligned} & \text { for } 200 \mathrm{~V} \\ & \text { DVOPM20068 } \end{aligned}$	power supply DVOPM20042	power supply DVOP1450	power supply DVOP220
3－phase		400	MBMS042BLO		MBEK043BCV	－		for 3－phase power supply	for 3－phase power supply	for 3－phase power supply
200 V		750	MBMS082BLO		MBEK083BCV			DVOPM20042	DVOP1450	DVOP220

GP series

Power supply	Rated rotation speed （r／min）	output （W）	Motor	Gear head （Note 1）	Brushless amplifier	Brushless amplifier $\binom{$ supplied with }{ power cable } （Note 2）	External regenerative resistor	Noise filter	Surge absorber	Reactor
Single phase 100 V	3000	50	MBMU5AZAB	MB8G■BV	MBEG5A1BCP	MBEG5A1BCPC	for 100 V DVOP2890	for single phase power supply DVOP4170	for single phase power supply DVOP4190	for single phase power supply DVOP227
		90	MBMU9A1AB	MB9G口BV	MBEG9A1BCP	MBEG9A1BCPC				
		130	MBMU1E1AB	MB9G■BV	MBEG1E1BCP	MBEG1E1BCPC				
Single phase／ 3－phase 200 V		50	MBMU5AZAB	MB8G■BV	MBEG5A5BCP	MBEG5A5BCPC	for 200 V DVOPM20068	for single phase power supply DVOP4170 for 3－phase power supply DVOPM20042	for single phase power supply DVOP4190 for 3－phase power supply DVOP1450	for single phase power supply DVOP227 for 3－phase power supply DVOP220
		90	MBMU9A2AB	MB9G口BV	MBEG9A5BCP	MBEG9A5BCPC				
		130	MBMU1E2AB	MB9G口BV	MBEG1E5BCP	MBEG1E5BCPC				

（Note 1）A figure representing reduction ratio in \square ．
（Note 2）Refer to p． 74 for a power supply connecting cable．
This part number is the ordering part number for the amplifier and power cable，not for ordering amplifier only．
（Note 3）Suffix of＂\bigcirc＂in the motor model represents shape of shaft．For more information，please refer to p． 27.
（Note 4）When connecting PC，the PC connection cable（DVOP4140）and the Digital key pad connection cable（DVOP383＊0）are required． If your PC does not have RS232 port，use RS232－USB converter．
－When installing the reactor，refer to p． 73.
－Be sure to use a set of matched components（series，power source，capacity，output，etc．）

Motor extension cable	Power supply connector kit	Console A	Console A connection cable	Digital key pad	Digital key pad connection cable	External speed setter	Control signal cable	I/O connector kit	Panel connector kit	PC connection cable (Note 4)	Noise filter for signal line	DIN rail attachment unit
$\begin{gathered} 1 \mathrm{~m} \\ \text { DVOPQ1000310 } \end{gathered}$	DVOP2870	DVOP3500	1 mDVOPM20069103 mDVOPM20069305 mDVOPM2006950	DVOP3510	1 mDVOP383103 mDVOP383305 mDVOP38350	DVOPM20078	2 m DVOPM20076	DVOPM20070	DVOP3610	$\begin{gathered} 1.5 \mathrm{~m} \\ \text { DVOP4140 } \end{gathered}$	DVOP1460	DVOP3811
	-											-
5 m DVOPQ1000350	DVOP2870											DVOP3811
	-											-

Index

Model No.	Specifications	Page
DVOP (Option)		
DVOP1450	Surge absorber (3-phase)	67
DVOP1460	Noise filter for control signals	67
DVOP220	Reactor	73
DVOP227	Reactor	73
DV0P228	Reactor	73
DVOP2870	Power supply connector kit	70
DVOP2890	External regenerative resistor 50Ω for 100 V	71
DVOP3500	Console A	68
DVOP3510	Digital key pad	68
DVOP3610	Panel connector kit (Fits to Console A)	71
DV0P3811	DIN rail attachment unit	72
DVOP38310	Digital key pad connection cable 1 m	68
DVOP38330	Digital key pad connection cable 3 m	68
DVOP38350	Digital key pad connection cable 5 m	68
DVOP4140	PC connection cable (10-pin D-sub connector pin 1.5 m)	70
DVOP4170	Noise filter (single phase)	67
DVOP4190	Surge absorber (single phase)	67
DV0PM20042	Noise filter (3-phase)	67
DVOPM20068	External regenerative resistor 200Ω for 200 V	71
DV0PM2006910	Console A connection cable 1 m	68
DVOPM2006930	Console A connection cable 3 m	68
DVOPM2006950	Console A connection cable 5 m	68
DVOPM20070	I/O connector kit	71
DVOPM20076	Control signal cable (cable with I/O connector)	70
DVOPM20078	External speed setter	71
DV0PQ1000110	Motor extension cable 1 m for GV, GP series	69
DV0PQ1000130	Motor extension cable 3 m for GV, GP series	69
DV0PQ1000150	Motor extension cable 5 m for GV, GP series	69
DV0PQ10001A1	Motor extension cable 10 m for GV, GP series	69
DV0PQ1000310	Motor extension cable 1 m for KV series	69
DV0PQ1000330	Motor extension cable 3 m for KV series	69
DVOPQ1000350	Motor extension cable 5 m for KV series	69
DVOPQ10003A1	Motor extension cable 10 m for KV series	69

Model No.	Specifications	Page
MB8G (For GP series gear head)		
MB8G10BV	80 mm sq. Reduction ratio: $1 / 10$	57,63
MB8G15BV	80 mm sq. Reduction ratio: $1 / 15$	57,63
MB8G20BV	80 mm sq. Reduction ratio: $1 / 20$	57,63
MB8G30BV	80 mm sq. Reduction ratio: $1 / 30$	57,63
MB8G50BV	80 mm sq. Reduction ratio: $1 / 50$	57,63
MB8G5BV	80 mm sq. Reduction ratio: $1 / 5$	57,63

MB9G (For \mathbf{l} (P series gear head)		
MB9G10BV	90 mm sq. Reduction ratio: $1 / 10$	$59,61,63$
MB9G15BV	90 mm sq. Reduction ratio: $1 / 15$	$59,61,63$
MB9G20BV	90 mm sq. Reduction ratio: $1 / 20$	$59,61,63$
MB9G30BV	90 mm sq. Reduction ratio: $1 / 30$	$59,61,63$
MB9G50BV	90 mm sq. Reduction ratio: $1 / 50$	$59,61,63$
MB9G5BV	90 mm sq. Reduction ratio: $1 / 5$	$59,61,63$

MBEG (For GP series amplifier)		
MBEG1E1BCP	130 W Single phase 100 V to 120 V	61
MBEG1E1BCPC	130 W Single phase 100 V to 120 V (Power cable included)*	61
MBEG1E5BCP	130 W Single/3-Phase 200 V to 240 V	61
MBEG1E5BCPC	130 W Single/3-Phase 200 V to 240 V (Power cable included)*	61
MBEG5A1BCP	50 W Single phase 100 V to 120 V	57
MBEG5A1BCPC	50 W Single phase 100 V to 120 V (Power cable included)*	57
MBEG5A5BCP	50 W Single/3-Phase 200 V to 240 V	57
MBEG5A5BCPC	50 W Single/3-Phase 200 V to 240 V (Power cable included)*	57
MBEG9A1BCP	90 W Single phase 100 V to 120 V	59
MBEG9A1BCPC	90 W Single phase 100 V to 120 V (Power cable included)*	59
MBEG9A5BCP	90 W Single/3-Phase 200 V to 240 V	59
MBEG9A5BCPC	90 W Single/3-Phase 200 V to 240 V (Power cable included)*	59
* This part number is the ordering part number for the amplifier and power cable, not for ordering amplifier only.		
MBEG (For GV series amplifier)		
MBEG9A1BCV	90 W Single phase 100 V to 120 V	19
MBEG9A1BCVC	90 W Single phase 100 V to 120 V (Power cable included)*	19
MBEG9A5BCV	90 W Single/3-Phase 200 V to 240 V	19
MBEG9A5BCVC	90 W Single/3-Phase 200 V to 240 V (Power cable included)*	19
MBEG5A1BCV	50 W Single phase 100 V to 120 V	17
MBEG5A1BCVC	50 W Single phase 100 V to 120 V (Power cable included)*	17
MBEG5A5BCV	50 W Single/3-Phase 200 V to 240 V	17
MBEG5A5BCVC	50 W Single/3-Phase 200 V to 240 V (Power cable included)*	17
MBEG1E1BCV	130 W Single phase 100 V to 120 V	21
MBEG1E1BCVC	130 W Single phase 100 V to 120 V (Power cable included)*	21
MBEG1E5BCV	130 W Single/3-Phase 200 V to 240 V	21
MBEG1E5BCVC	130 W Single/3-Phase 200 V to 240 V (Power cable included)*	21
* This part number is the ordering part number for the amplifier and power cable, not for ordering amplifier only.		

Model No.	Specifications			Page
MBEK (For KV series amplifier)				
MBEK011BCV	100 W Single phase 100 V to 120 V			37
MBEK011BCVC	100 W Single phase 100 V to 120 V (Power cable included)*			37
MBEK015BCV	100 W Single/3-Phase 200 V to 240 V			37
MBEK015BCVC	100 W Single/3-Phase 200 V to 240 V (Power cable included)*			37
MBEK021BCV	200 W Single phase 100 V to 120 V			39
MBEK025BCV	200 W Single/3-Phase 200 V to 240 V			39
MBEK043BCV	400 W 3-Phase 200 V to 240 V			41
MBEK083BCV	750 W 3 -Phase 200 V to 240 V			43
MBEK5A1BCV	50 W Single phase 100 V to 120 V			35
MBEK5A1BCVC	50 W Single phase 100 V to 120 V (Power cable included)*			35
MBEK5A5BCV	50 W Single/3-Phase 200 V to 240 V			35
MBEK5A5BCVC	50 W Single/3-Phase 200 V to 240 V (Power cable included)*			35
* This part number is the ordering part number for the amplifier and power cable, not for ordering amplifier only.				
MBMS (For KV series motor)				
MBMS011BLA	60 mm sq. Round shaft motor 100 W Single phase 100 V to 120 V		Without oil seal	37
MBMS011BLC	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 100 \mathrm{~W} \end{aligned}$	Round shaft motor Single phase 100 V to 120 V	With oil seal	37
MBMS011BLN	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 100 \mathrm{~W} \end{aligned}$	D-cut shaft motor Single phase 100 V to 120 V	Without oil seal	37
MBMS011BLQ	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 100 \mathrm{~W} \end{aligned}$	D-cut shaft motor Single phase 100 V to 120 V	With oil seal	37
MBMS011BLS	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 100 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor Single phase 100 V to 120 V	Without oil seal	37
MBMS011BLU	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 100 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor Single phase 100 V to 120 V	With oil seal	37
MBMS012BLA	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 100 \mathrm{~W} \end{aligned}$	Round shaft motor Single/3-Phase 200 V to 240 V	Without oil seal	37
MBMS012BLC	$\begin{aligned} & 60 \mathrm{~mm} \mathrm{sq} . \\ & 100 \mathrm{~W} \end{aligned}$	Round shaft motor Single/3-Phase 200 V to 240 V	With oil seal	37
MBMS012BLN	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 100 \mathrm{~W} \end{aligned}$	D-cut shaft motor Single/3-Phase 200 V to 240 V	Without oil seal	37
MBMS012BLQ	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 100 \mathrm{~W} \end{aligned}$	D-cut shaft motor Single/3-Phase 200 V to 240 V	With oil seal	37
MBMS012BLS	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 100 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor Single/3-Phase 200 V to 240 V	Without oil seal	37
MBMS012BLU	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 100 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor Single/3-Phase 200 V to 240 V	With oil seal	37
MBMS021BLA	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 200 \mathrm{~W} \end{aligned}$	Round shaft motor Single phase 100 V to 120 V	Without oil seal	39
MBMS021BLC	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 200 \mathrm{~W} \end{aligned}$	Round shaft motor Single phase 100 V to 120 V	With oil seal	39
MBMS021BLN	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 200 \mathrm{~W} \end{aligned}$	D-cut shaft motor Single phase 100 V to 120 V	Without oil seal	39
MBMS021BLQ	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 200 \mathrm{~W} \end{aligned}$	D-cut shaft motor Single phase 100 V to 120 V	With oil seal	39
MBMS021BLS	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 200 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor Single phase 100 V to 120 V	Without oil seal	39
MBMS021BLU	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 200 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor Single phase 100 V to 120 V	With oil seal	39
MBMS022BLA	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 200 \mathrm{~W} \end{aligned}$	Round shaft motor Single/3-Phase 200 V to 240 V	Without oil seal	39
MBMS022BLC	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 200 \mathrm{~W} \end{aligned}$	Round shaft motor Single/3-Phase 200 V to 240 V	With oil seal	39
MBMSO22BLN	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 200 \mathrm{~W} \end{aligned}$	D-cut shaft motor Single/3-Phase 200 V to 240 V	Without oil seal	39
MBMS022BLQ	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 200 \mathrm{~W} \end{aligned}$	D-cut shaft motor Single/3-Phase 200 V to 240 V	With oil seal	39
MBMS022BLS	$\begin{aligned} & 60 \mathrm{~mm} \mathrm{sq} . \\ & 200 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor Single/3-Phase 200 V to 240 V	Without oil seal	39
MBMS022BLU	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 200 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor Single/3-Phase 200 V to 240 V	With oil seal	39
MBMS042BLA	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 400 \mathrm{~W} \end{aligned}$	Round shaft motor 3-Phase 200 V to 240 V	Without oil seal	41
MBMS042BLC	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 400 \mathrm{~W} \end{aligned}$	Round shaft motor 3-Phase 200 V to 240 V	With oil seal	41
MBMS042BLN	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 400 \mathrm{~W} \end{aligned}$	D-cut shaft motor 3-Phase 200 V to 240 V	Without oil seal	41

Model No.	Specifications		Page
MBMS (For KV series motor)			
MBMS042BLQ	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 400 \mathrm{~W} \end{aligned}$	D-cut shaft motor \quad With oil seal 3-Phase 200 V to $240 \mathrm{~V} \quad$	41
MBMS042BLS	$\begin{aligned} & 60 \mathrm{~mm} \text { sq. } \\ & 400 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor Without oil seal 3 -Phase 200 V to 240 V	41
MBMS042BLU	$60 \mathrm{~mm} \mathrm{sq} .$ $400 \text { W }$	Keyway, center tap shaft motor With oil seal 3-Phase 200 V to 240 V	41
MBMS082BLA	$\begin{aligned} & 80 \mathrm{~mm} \text { sq. } \\ & 750 \mathrm{~W} \end{aligned}$	Round shaft motor Without oil seal 3-Phase 200 V to 240 V .	43
MBMS082BLC	$\begin{aligned} & 80 \mathrm{~mm} \text { sq. } \\ & 750 \mathrm{~W} \end{aligned}$	Round shaft motor \quad With oil seal 3-Phase 200 V to $240 \mathrm{~V} \quad$	43
MBMS082BLN	$\begin{aligned} & 80 \mathrm{~mm} \text { sq. } \\ & 750 \mathrm{~W} \end{aligned}$	D-cut shaft motor \quad Without oil seal 3-Phase 200 V to $240 \mathrm{~V} \quad$	43
MBMS082BLQ	$\begin{aligned} & 80 \mathrm{~mm} \text { sq. } \\ & 750 \mathrm{~W} \end{aligned}$		43
MBMS082BLS	$\begin{aligned} & 80 \mathrm{~mm} \text { sq. } \\ & 750 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor Without oil seal 3-Phase 200 V to 240 V	43
MBMS082BLU	$\begin{aligned} & 80 \mathrm{~mm} \text { sq. } \\ & 750 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor With oil seal 3-Phase 200 V to 240 V	43
MBMS5AZBLA	$\begin{aligned} & 38 \mathrm{~mm} \text { sq. } \\ & 50 \mathrm{~W} \end{aligned}$	Round shaft motor Without oil seal Single phase 100 V to 120 V , Single/3-Phase 200 V to 240 V	35
MBMS5AZBLC	38 mm sq. 50 W	Round shaft motor With oil seal Single phase 100 V to 120 V , Single/3-Phase 200 V to 240 V	35
MBMS5AZBLN	$\begin{aligned} & 38 \mathrm{~mm} \text { sq. } \\ & 50 \mathrm{~W} \end{aligned}$	D-cut shaft motor Without oil seal Single phase 100 V to 120 V , Singl//3-Phase 200 V to 240 V	35
MBMS5AZBLQ	$\begin{aligned} & 38 \mathrm{~mm} \text { sq. } \\ & 50 \mathrm{~W} \end{aligned}$	D-cut shaft motor With oil seal Single phase 100 V to 120 V , Single/3-Phase 200 V to 240 V	35
MBMS5AZBLS	$\begin{aligned} & 38 \mathrm{~mm} \text { sq. } \\ & 50 \mathrm{~W} \end{aligned}$	Keyway, center tap shaft motor Without oil seal Single phase 100 V to 120 V , Single/3-Phase 200 V to 240 V	35
MBMS5AZBLU	38 mm sq. 50 W	Keyway, center tap shaft motor With oil seal Single phase 100 V to 120 V , Single/3-Phase 200 V to 240 V	35
MBMU (For GP series motor)			
MBMU1E1AB	$\begin{aligned} & 90 \mathrm{~mm} \text { sq. } \\ & 130 \mathrm{~W} \end{aligned}$	Pinion shaft motor Single phase 100 V to 120 V	61
MBMU1E2AB	$\begin{aligned} & 90 \mathrm{~mm} \text { sq. } \\ & 130 \mathrm{~W} \end{aligned}$	Pinion shaft motor Single/3-Phase 200 V to 240 V	61
MBMU5AZAB	80 mm sq. 50 W	Pinion shaft motor Single phase 100 V to 120 V , Single/3-Phase 200 V to 240 V	57
MBMU9A1AB	$90 \text { mm sq. }$ $90 \text { W }$	Pinion shaft motor Single phase 100 V to 120 V	59
MBMU9A2AB	90 mm sq. 90 W	Pinion shaft motor Single/3-Phase 200 V to 240 V	59
MBMU (For GV series motor)			
MBMU1E1AZ	$\begin{aligned} & 90 \mathrm{~mm} \text { sq. } \\ & 130 \mathrm{~W} \end{aligned}$	Pinion shaft motor Single phase 100 V to 120 V	21
MBMU1E2AZ	$\begin{aligned} & 90 \mathrm{~mm} \text { sq. } \\ & 130 \mathrm{~W} \end{aligned}$	Pinion shaft motor Single/3-Phase 200 V to 240 V	21
MBMU1E1AS	$\begin{aligned} & 90 \mathrm{~mm} \text { sq. } \\ & 130 \mathrm{~W} \end{aligned}$	Round shaft motor Single phase 100 V to 120 V	21
MBMU1E2AS	$\begin{aligned} & 90 \mathrm{~mm} \text { sq. } \\ & 130 \mathrm{~W} \end{aligned}$	Round shaft motor Single/3-Phase 200 V to 240 V	21
MBMU5AZAX	$\begin{aligned} & 80 \mathrm{~mm} \text { sq. } \\ & 50 \mathrm{~W} \end{aligned}$	Pinion shaft motor Single phase 100 V to 120 V , Single/3-Phase 200 V to 240 V	17
MBMU5AZAS	$80 \text { mm sq. }$ $50 \mathrm{~W}$	Round shaft motor Single phase 100 V to 120 V , Single/3-Phase 200 V to 240 V	17
MBMU9A1AZ	90 mm sq. 90 W	Pinion shaft motor Single phase 100 V to 120 V	19
MBMU9A2AZ	$90 \mathrm{~mm} \mathrm{sq} .$ $90 \text { W }$	Pinion shaft motor Single/3-Phase 200 V to 240 V	19
MBMU9A1AS	90 mm sq. 90 W	Round shaft motor Single phase 100 V to 120 V	19
MBMU9A2AS	$90 \text { mm sq. }$ $90 \mathrm{~W}$	Round shaft motor Single/3-Phase 200 V to 240 V	19

Index

Model No.	Specifications	Page
MX8G (For GV series gear head)		
MX8G100B	80 mm sq. Reduction ratio: 1/100	17,23
MX8G10B	80 mm sq. Reduction ratio: 1/10	17,23
MX8G12.5B	80 mm sq. Reduction ratio: 1/12.5	17,23
MX8G120B	80 mm sq. Reduction ratio: 1/120	17,23
MX8G150B	80 mm sq. Reduction ratio: 1/150	17,23
MX8G15B	80 mm sq . Reduction ratio: $1 / 15$	17,23
MX8G180B	80 mm sq. Reduction ratio: 1/180	17,23
MX8G18B	80 mm sq. Reduction ratio: 1/18	17,23
MX8G20B	80 mm sq. Reduction ratio: 1/20	17,23
MX8G25B	80 mm sq. Reduction ratio: $1 / 25$	17,23
MX8G3.6B	80 mm sq. Reduction ratio: 1/3.6	17,23
MX8G30B	80 mm sq. Reduction ratio: 1/30	17,23
MX8G36B	80 mm sq . Reduction ratio: $1 / 36$	17,23
MX8G3B	80 mm sq . Reduction ratio: $1 / 3$	17,23
MX8G50B	80 mm sq. Reduction ratio: 1/50	17,23
MX8G5B	80 mm sq . Reduction ratio: 1/5	17,23
MX8G60B	80 mm sq . Reduction ratio: 1/60	17,23
MX8G6B	80 mm sq . Reduction ratio: 1/6	17,23
MX8G7.5B	80 mm sq. Reduction ratio: 1/7.5	17,23
MX8G75B	80 mm sq . Reduction ratio: $1 / 75$	17,23
MX8G90B	80 mm sq . Reduction ratio: 1/90	17,23
MX8G9B	80 mm sq. Reduction ratio: 1/9	17,23

MY9G (For GV series gear head)			
MY9G100B	90 mm sq. Hinge attached	Reduction ratio: 1/100	19,21,23
MY9G10B	90 mm sq. Hinge attached	Reduction ratio: 1/10	19,21,23
MY9G12.5B	90 mm sq . Hinge attached	Reduction ratio: 1/12.5	19,21,23
MY9G120B	90 mm sq. Hinge attached	Reduction ratio: 1/120	19,21,23
MY9G150B	90 mm sq . Hinge attached	Reduction ratio: 1/150	19,21,23
MY9G15B	90 mm sq. Hinge attached	Reduction ratio: 1/15	19,21,23
MY9G180B	90 mm sq. Hinge attached	Reduction ratio: 1/180	19,21,23
MY9G18B	90 mm sq. Hinge attached	Reduction ratio: 1/18	19,21,23
MY9G200B	90 mm sq . Hinge attached	Reduction ratio: 1/200	19,21,23
MY9G20B	90 mm sq . Hinge attached	Reduction ratio: 1/20	19,21,23
MY9G25B	90 mm sq. Hinge attached	Reduction ratio: 1/25	19,21,23
MY9G3.6B	90 mm sq. Hinge attached	Reduction ratio: $1 / 3.6$	19,21,23
MY9G30B	90 mm sq. Hinge attached	Reduction ratio: 1/30	19,21,23
MY9G36B	90 mm sq. Hinge attached	Reduction ratio: 1/36	19,21,23
MY9G3B	90 mm sq. Hinge attached	Reduction ratio: 1/3	19,21,23
MY9G50B	90 mm sq. Hinge attached	Reduction ratio: 1/50	19,21,23
MY9G5B	90 mm sq. Hinge attached	Reduction ratio: 1/5	19,21,23
MY9G60B	90 mm sq. Hinge attached	Reduction ratio: 1/60	19,21,23
MY9G6B	90 mm sq. Hinge attached	Reduction ratio: 1/6	19,21,23
MY9G7.5B	90 mm sq. Hinge attached	Reduction ratio: 1/7.5	19,21,23

Model No. Specifications Page

MY9G (For GV series gear head)			
MY9G75B	90 mm sq.	Hinge attached	Reduction ratio: $1 / 75$
MY9G90B	90 mm sq.	Hinge attached	Reduction ratio: $1 / 90$
MY9G9B	90 mm sq.	Hinge attached	Reduction ratio: $1 / 9$

MZ9G (For GV series gear head)			
MZ9G100B	90 mm sq. Hinge not attached	Reduction ratio: 1/100	19,21,23
MZ9G10B	90 mm sq. Hinge not attached	Reduction ratio: 1/10	19,21,23
MZ9G12.5B	90 mm sq. Hinge not attached	Reduction ratio: 1/12.5	19,21,23
MZ9G120B	90 mm sq. Hinge not attached	Reduction ratio: 1/120	19,21,23
MZ9G150B	90 mm sq. Hinge not attached	Reduction ratio: 1/150	19,21,23
MZ9G15B	90 mm sq. Hinge not attached	Reduction ratio: 1/15	19,21,23
MZ9G180B	90 mm sq. Hinge not attached	Reduction ratio: 1/180	19,21,23
MZ9G18B	90 mm sq. Hinge not attached	Reduction ratio: 1/18	19,21,23
MZ9G200B	90 mm sq. Hinge not attached	Reduction ratio: 1/200	19,21,23
MZ9G20B	90 mm sq. Hinge not attached	Reduction ratio: 1/20	19,21,23
MZ9G25B	90 mm sq. Hinge not attached	Reduction ratio: 1/25	19,21,23
MZ9G3.6B	90 mm sq. Hinge not attached	Reduction ratio: 1/3.6	19,21,23
MZ9G30B	90 mm sq. Hinge not attached	Reduction ratio: 1/30	19,21,23
MZ9G36B	90 mm sq. Hinge not attached	Reduction ratio: 1/36	19,21,23
MZ9G3B	90 mm sq. Hinge not attached	Reduction ratio: $1 / 3$	19,21,23
MZ9G50B	90 mm sq. Hinge not attached	Reduction ratio: 1/50	19,21,23
MZ9G5B	90 mm sq. Hinge not attached	Reduction ratio: $1 / 5$	19,21,23
MZ9G60B	90 mm sq. Hinge not attached	Reduction ratio: 1/60	19,21,23
MZ9G6B	90 mm sq. Hinge not attached	Reduction ratio: 1/6	19,21,23
MZ9G7.5B	90 mm sq. Hinge not attached	Reduction ratio: 1/7.5	19,21,23
MZ9G75B	90 mm sq. Hinge not attached	Reduction ratio: 1/75	19,21,23
MZ9G90B	90 mm sq. Hinge not attached	Reduction ratio: 1/90	19,21,23
MZ9G9B	90 mm sq . Hinge		19,21,23

Sales office

[Panasonic sales office of motors]

Country	Company Name	City	Address	TEL
				FAX
North America	Panasonic Industrial Devices Sales Company of America (PIDSA)	New Jersey	Three Panasonic Way, 7E-2 Secaucus, NJ 07094 U.S.A.	+1-201-348-5356
				+1-201-392-4315
	Panasonic Electric Works Corporation of America (PEWA)	New Jersey	629 Central Avenue New Providence, NJ 07974 U.S.A.	+1-908-464-3550
				Technical Support: $+1-877-624-7872$
				+1-908-771-5655
Brazil	Panasonic Electric Works Corporation of America Brazil Rep. Office	Sao Paulo	Rua Cubatao, 320-8 andar-Paraiso, CEP 04013-001 Sao Paulo-SP	+55-11-3889-4006
				+55-11-3889-4103
Spain	Panasonic Electric Works Espana S.A.	Madrid	Barajas Park, San Severo 20, 28042 Madrid, Spain	+34-91-329-3875
				+34-91-329-2976
Germany	Panasonic Industrial Devices Sales Europe GmbH	Munich	Hans-Pinsel-Strasse 2•D-85540 Haar • Germany	+49-89-46-159-0
				+49-89-46-159-212
Italy	Panasonic Electric Works Italia srl	Verona	Via del Commercio 3-5 (Z.I.Ferlina), 37012 Bussolengo (VR), Italy	+39-045-6752711
				+39-045-6700444
Russia	Electroprivod Ltd. (*Distributors)	St.Petersburg	Russia, 194044, St.Peterburg, 29A, Viborgskay emb.	+7-703-09-81
				+7-493-27-26
			Website: http://www.electroprivod.ru	
China	Panasonic Shun Hing Industrial Devices Sales (Hong Kong) Co.,Ltd. (PSIDSHK)	Hong kong	Level 33, Office Tower, Langham Place, 8 Argyle Street, Mongkok, Kin.,Hong Kong	+852-2529-7322
				+852-2598-9743
	Panasonic Industrial Devices Sales (China) Co.,Ltd. (PIDSCN)	Shanghai	Floor 7, China Insurance Building, 166 East Road LuJiaZui PuDong New District, Shanghai, China	+86-21-3855-2442
				+86-21-3855-2375
	Panasonic SH Industrial Devices Sales (Shenzhen) Co.,Ltd. (PSIDSSZN)	Shenzhen	8/F, Tower Three, Kerry Plaza, 1-1 Zhongxinsi Road, Futian District, Shenzhen, China	+86-755-8255-8551
				+86-755-8255-8668
India	Panasonic Industrial Devices Sales India (PIDSIN) (A division company of Panasonic India Pvt Ltd.)	Haryana	7th Floor, ABW Tower, IFFCO Chowk, MG Road, Sector 25, Gurgaon-122 001, Haryana, India	+91-124-4596600
				+91-124-4596625
Korea	Panasonic Industrial Devices Sales Korea Co., Ltd. (PIDSKR)	Seoul	14F, West-gate Bldg, 332 Migeundong, Seodaemun-gu, Seoul, 120-020, Korea	+82-2-795-9600
				+82-2-795-1542
Taiwan	Panasonic Industrial Devices Sales Taiwan Co.,Ltd.	Taipei	12F, No.9, SongGao Rd., Taipei 110, Taiwan, R.O.C.	+886-2-2757-1900
				+886-2-2757-1977
Singapore	Panasonic Industrial Devices Sales Asia Pte. Ltd.	Singapore	300 Beach Road \#16-01 The Concourse Singapore 199555	+65-6390-3718
				+65-6390-3801
	Intermech Machinery Pte Ltd. (*Distributors)	Singapore	2 Woodlands Sector 1 \#03-25, Woodlands Spectrum 1 Singapore 738068	+65-6751-5088
				+65-6759-2122
			Website: http://www.intermech.com.sg	

Country	Company Name	City	Address	TEL
				FAX
Malaysia	Panasonic Industrial Devices Sales Asia Pte. Ltd.	Singapore	300 Beach Road \#16-01 The Concourse Singapore 199555	+65-6390-3718
				+65-6390-3801
	Panamech Machinery Sdn Bhd (*Distributors)	Kuala Lumpur	No.14, Lorong Sanggul 1C, Bandar Puteri, 41200 Klang, Selangor Darul Ehsan	+60-3-5161-7876
				+60-3-5161-7136
			Website: http://www.panamech.com.my	
	Panamech (PG) Sdn Bhd (*Distributors)	Penang	Sri Relau Komplex, Unit 1-3-11, Persiaran Bukit Jambul 1, 11900 Penang	+60-4-643-8266
				+60-4-645-1639
			Website: http://www.panamech.com.my	
Thailand	Panasonic Industrial Devices Sales Asia Pte. Ltd.	Singapore	300 Beach Road \#16-01 The Concourse Singapore 199555	+65-6390-3718
				+65-6390-3801
	Premier Automation Center Co.,Ltd. (*Distributors)	Bangkok	73 Soi Ladkrabang 30 Ladkrabang Ladkrabang Bangkok 10520	+66-2181-2299
				+66-2181-2288
			Website: http://www.premier-ac.co.th	
	Plenty Island (Thai) Co.,Ltd. (*Distributors)	Bangkok	3 Soi Charoenrat 10, Charoenrat Road., Bangkhlo, Bangkhorlaem, Bangkok 10120	+66-2291-9933
				+66-2291-2065
			Website: http://www.plenty.co.th	
	Seng Charoen Muang Co.,Ltd. (*Distributors)	Bangkok	12/349 Moo 15, Bangkaew, Bangplee, Samutprakam 10540	+66-2397-9577
				+66-2361-8207
			Website: http://www.sengscm.com	
Indonesia	Panasonic Industrial Devices Sales Asia Pte. Ltd.	Singapore	300 Beach Road \#16-01 The Concourse Singapore 199555	+65-6390-3718
				+65-6390-3801
	PT. Handal Yesindo Sejahtera (*Distributors)	Surabaya	JI. Raya Kutisari 8A, Surabaya, Indonesia	+62-31-843-8844
				+62-31-841-4333
			Website: http://www.handalyesindo.com	
	PT.Riasarana Electrindo (*Distributors)	Jakarta	JI. Prof. Dr. Latumenten Grogol Permai blok D No. 8-15 Jakarta 11460, Indonesia	+62-21-564-9178
				+62-21-566-7405
			Website: http://www.risacorps.com	

[^0]: Single-phase: $100 \mathrm{~V}-120 \mathrm{~V}$ (Single-/Three-phase: $200 \mathrm{~V}-240 \mathrm{~V}$)

[^1]: *1 Representative value
 *2 Motor shaft speed: to be multiplied by the reduction ratio when the gear head is used.
 *3 Excluding the shaft pass-through section and cable end connector.
 *4 These motors conform to the test conditions specified in EN standards (EN60529, EN60034-5).
 Do not use these motors in application where water proof performance is required such as continuous wash-down operation.

[^2]: * Before using, be sure to read "Instruction manual" to check precautions and correct procedure.

[^3]: * Before using, be sure to read "Instruction manual" to check precautions and correct procedure.

[^4]: <Cautions> Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

[^5]: * Before using, be sure to read "Instruction manual" to check precautions and correct procedure.

[^6]: *1 SCCR: Symmetrical current 5,000 Arms, Max. 240 V
 Motor over-temperature protection is not provided.
 Motor over-load-temperature protection shall be provided at the final installation upon required by the NEC (National Electric Code).
 *2 Information related to the Korea Radio Law
 This brushless amplifier is a Class A commercial broadcasting radio wave generator not designed for home use. The user and dealer should be aware of this fact.

